Direkt zum Inhalt
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Suche
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIÖffnen dieses Hauptmenu Punktes
    • Research Initiatives
    • Ethics and Research integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsÖffnen dieses Hauptmenu Punktes
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Scientific Computing, Theory and Data
    • Large Research Facilities
  • Facilities and InstrumentsÖffnen dieses Hauptmenu Punktes
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesÖffnen dieses Hauptmenu Punktes
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • New ProjectsÖffnen dieses Hauptmenu Punktes
    • SLS 2.0
    • IMPACT
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

Sie befinden sich hier:

  1. PSI Home
  2. Labs & User Services
  3. NUM
  4. SINQ
  5. HRPT

Sekundäre Navigation

HRPT

  • Description
    • Specifications
    • Data Analysis
    • Operating Instructions
    • Links related to neutron scattering, crystallography
    • Diffraction Group
    • LNS
    • Sample Environment
    • Neutron Diffraction Practicum
    • Accelerator status
    • Status of SINQ and UCN
      • HIPA info
    • HRPT quick status
    • PSI Digital User Office DUO
  • User Information
    • PSI areal map, phonebook, ...
    • Schedules
  • Publications
    • Examples of Results and Publication Statistics
  • People
  • Safety

Info message

Dieser Inhalt ist nicht auf Deutsch verfügbar.
HRPT

HRPT: High-Resolution Powder Diffractometer for Thermal Neutrons

Instrument responsibles: Vladimir Pomjakushin and Denis Sheptyakov
HRPT poster pdf HRPT slide pdf HRPT presentation pdf


The multidetector diffractometer HRPT [1] is designed as flexible instrument for efficient neutron powder diffraction studies - also for small sample sizes. High resolution (δd/d < 0.001) is achieved by thermal neutrons, large scattering angles of the monochromator and of the sample (up to 165°). By means of primary collimators, a secondary slit system and by appropriate choice of the sample diameter, resolution and intensity can be optimized. Wide range of neutron wavelengths λ = 1.04-2.96 Å is available. Due to the use of a large position sensitive (PSD) 3He detector , simultaneous measurements are possible within a scattering angle range of 160 degrees with angular step 0.1°. The detector can be positioned on air cushions also at intermediate positions and the angular step can be e.g. 0.05° or less. The detector can run in stroboscopic mode for the measurements of the crystal structures as a function of time the periodic processes (for example, charging/discharging) with maximal time resolution 10ms. An oscillating radial collimator suppresses Bragg peaks from the sample environment such as for cryostats, furnaces, magnets or high pressure cells (<14 kbar) and (<100 kbar). The HRPT instrument is also equipped with the computer controlled sample changer for eight (8) samples for room temperature, sample changer for four (4) and for five (5) samples with sample rotation for the temperature range 1.5 - 315 K. HRPT is complementary to the Cold Neutron Powder Diffractometer DMC, which is designed for high-intensity performance. More instrumental details and specifications can be found here.

Complementary to synchrotron X-ray powder diffraction studies, the applications of HRPT are high-resolution refinements of chemical and magnetic structures as well as phase analysis of novel materials. Because of the generally weak absorption, neutrons yield information on bulk properties (average over large sample volumes) and permit in a nondestructive way the detection of lattice distortions, defects and internal microstrains. Also real-time (in-situ) investigations of chemical or structural changes and of magnetic phase transitions in crystalline, quasicrystalline, amorphous and liquid samples including technically interesting new materials are possible. Examples are precise localization of light elements (isotopes) such as hydrogen (deuterium) in metal deuterides (metal hydrogen storage systems) or zeolites, oxygen in high-Tc and CMR systems or 7Li in ionic conductors etc. Another advantage may be the distinction between neighboring elements in the periodic table such as Mn (negative neutron scattering amplitude b) and Fe (b > 0). Moreover, nuclear neutron scattering yields in case of a sufficiently large range of momentum transfer accurate information on average thermal motion (harmonic and anharmonic temperature factors). These applications are important in crystallography, condensed matter physics, chemistry and materials science. In particular, profile analysis as a function of external parameters such as temperature is standard in neutron diffraction.

First experiments were performed on HRPT in 1999, and user operation was started in April 2000.

The HRPT instrument is used not only for academical science in frame of user policy program, but also a limited amount of HRPT beam time is sold to industrial companies. Some companies cannot disclose the details of their research for confidentiality reasons and in this case HRPT beam time can be bought skipping the usual proposal evaluation procedure. For instance, in 2009 several days of HRPT had been bought by "Toyota Europe" company for the research in the field of new materials for energy storage.

Reference
[1] P. Fischer et al., Physica B 276-278, 146 (2000)

Mit Sidebar

Organization

  • LNS Groups
  • LNS Home
  • NUM Division
SINQ Quicklinks
  • Instruments Overview
  • Experiment Proposals

User Contact Points at PSI

PSI User Office
DUO Login


Call for Proposals

Next submission deadline:
May 15, 2023

More Information


SINQ Sample Environment

Get full information on the SINQ sample environment
top

Fussbereich

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Schweiz

Telefon: +41 56 310 21 11
Telefax: +41 56 310 21 99

Der Weg zu uns
Kontakt

Besucherzentrum psi forum
Schülerlabor iLab
Zentrum für Protonentherapie
PSI Bildungszentrum
PSI Guest House (in english)
PSI Gastronomie
psi forum-Shop

 

Service & Support

  • Telefonbuch
  • User Office
  • Accelerator Status
  • Publikationen des PSI
  • Lieferanten
  • E-Rechnung
  • Computing
  • Sicherheit

Karriere

  • Arbeiten am PSI
  • Stellenangebote
  • Aus- und Weiterbildung
  • Career Center
  • Berufsbildung
  • PSI Bildungszentrum

Für die Medien

  • Das PSI in Kürze
  • Zahlen und Fakten
  • Mediacorner
  • Medienmitteilungen
  • Social Media

Folgen Sie uns: Twitter (deutsch) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Impressum
  • Nutzungsbedingungen
  • Editoren-Login