Aller au contenu principal
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Rechercher
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOuvrir ce point de menu principal
    • Research Initiatives
    • Research Integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOuvrir ce point de menu principal
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Large Research Facilities
  • Facilities and InstrumentsOuvrir ce point de menu principal
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOuvrir ce point de menu principal
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

Vous êtes ici:

  1. PSI Home
  2. Labs & User Services
  3. NUM
  4. SINQ
  5. HRPT

Navigation secondaire

HRPT

  • Description
    • Specifications
    • Data Analysis
    • Operating Instructions
    • Links related to neutron scattering, crystallography
    • Diffraction Group
    • LNS
    • Sample Environment
    • Neutron Diffraction Practicum
    • Accelerator status
    • Status of SINQ and UCN
      • HIPA info
    • HRPT quick status
    • PSI Digital User Office DUO
    • PSI Phonebook and e-mail directory
  • HRPT: High-Resolution Powder Diffractometer for Thermal Neutrons
  • User Information
    • PSI areal map, phonebook, ...
    • Schedules
  • Publications
    • Examples of Results and Publication Statistics
  • People
  • Safety

Info message

Ce contenu n'est pas disponible en français.
HRPT

HRPT: High-Resolution Powder Diffractometer for Thermal Neutrons

Instrument responsibles: Vladimir Pomjakushin and Denis Sheptyakov
HRPT poster pdf HRPT slide pdf HRPT presentation pdf


The multidetector diffractometer HRPT [1] is designed as flexible instrument for efficient neutron powder diffraction studies - also for small sample sizes. High resolution (δd/d < 0.001) is achieved by thermal neutrons, large scattering angles of the monochromator and of the sample (up to 165°). By means of primary collimators, a secondary slit system and by appropriate choice of the sample diameter, resolution and intensity can be optimized. Wide range of neutron wavelengths λ = 1.04-2.96 Å is available. Due to the use of a large position sensitive (PSD) 3He detector , simultaneous measurements are possible within a scattering angle range of 160 degrees with angular step 0.1°. The detector can be positioned on air cushions also at intermediate positions and the angular step can be e.g. 0.05° or less. The detector can run in stroboscopic mode for the measurements of the crystal structures as a function of time the periodic processes (for example, charging/discharging) with maximal time resolution 10ms. An oscillating radial collimator suppresses Bragg peaks from the sample environment such as for cryostats, furnaces, magnets or high pressure cells (<14 kbar) and (<100 kbar). The HRPT instrument is also equipped with the computer controlled sample changer for eight (8) samples for room temperature, sample changer for four (4) and for five (5) samples with sample rotation for the temperature range 1.5 - 315 K. HRPT is complementary to the Cold Neutron Powder Diffractometer DMC, which is designed for high-intensity performance. More instrumental details and specifications can be found here.

Complementary to synchrotron X-ray powder diffraction studies, the applications of HRPT are high-resolution refinements of chemical and magnetic structures as well as phase analysis of novel materials. Because of the generally weak absorption, neutrons yield information on bulk properties (average over large sample volumes) and permit in a nondestructive way the detection of lattice distortions, defects and internal microstrains. Also real-time (in-situ) investigations of chemical or structural changes and of magnetic phase transitions in crystalline, quasicrystalline, amorphous and liquid samples including technically interesting new materials are possible. Examples are precise localization of light elements (isotopes) such as hydrogen (deuterium) in metal deuterides (metal hydrogen storage systems) or zeolites, oxygen in high-Tc and CMR systems or 7Li in ionic conductors etc. Another advantage may be the distinction between neighboring elements in the periodic table such as Mn (negative neutron scattering amplitude b) and Fe (b > 0). Moreover, nuclear neutron scattering yields in case of a sufficiently large range of momentum transfer accurate information on average thermal motion (harmonic and anharmonic temperature factors). These applications are important in crystallography, condensed matter physics, chemistry and materials science. In particular, profile analysis as a function of external parameters such as temperature is standard in neutron diffraction.

First experiments were performed on HRPT in 1999, and user operation was started in April 2000.

The HRPT instrument is used not only for academical science in frame of user policy program, but also a limited amount of HRPT beam time is sold to industrial companies. Some companies cannot disclose the details of their research for confidentiality reasons and in this case HRPT beam time can be bought skipping the usual proposal evaluation procedure. For instance, in 2009 several days of HRPT had been bought by "Toyota Europe" company for the research in the field of new materials for energy storage.

Reference
[1] P. Fischer et al., Physica B 276-278, 146 (2000)

Sidebar

Organization

  • Neutron Diffraction Group
  • Laboratory for Neutron Scattering and Imaging
  • NUM Division
SINQ Quicklinks
  • Instruments Overview
  • Experiment Proposals

User Contact Points at PSI

PSI User Office
DUO Login


Call for Proposals

Next submission deadline:
May 15, 2021

More Information


Upcoming Events

Get a list of upcoming scientific conferences and seminars

PSI User Facilities Newsletter

Current News from PSI photon, neutron and muon user facilities

Open Positions

  • SINQ open positions
  • Open positions in the Division NUM
top

Pied de page

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Suisse

Téléphone: +41 56 310 21 11
Téléfax: +41 56 310 21 99

Comment nous trouver 
Formulaire de contact

Centre de visiteurs psi forum
Laboratoire élèves iLab (en allemand)
Centre de protonthérapie
Centre de Formation du PSI (en allemand)
PSI Guest House (en anglais)
PSI Gastronomie (en allemand)

Service & Support

  • ​Annuaire/Liste de contacts
  • User Office
  • Accelerator Status
  • Publications du PSI
  • Fournisseurs
  • E-facture
  • Computing (en anglais)
  • Sicherheit (en allemand)

Carrière

  • Travailler au PSI
  • Offres d'emploi
  • Formation initiale et formation continue
  • Formation professionnelle (en allemand)
  • Centre de Formation du PSI

Pour les médias

  • Le PSI en bref
  • Chiffres et faits
  • Contact destiné aux médias
  • Communiqués de presse
  • Social Media Newsroom

Suivez le PSI: Twitter (en allemand) LinkedIn Youtube Issuu RSS

Footer legal

  • Impressum
  • Conditions d'utilisation
  • Login éditeurs