Direkt zum Inhalt
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Suche
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIÖffnen dieses Hauptmenu Punktes
    • Research on Covid-19
    • Research Initiatives
    • Ethics and Research integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsÖffnen dieses Hauptmenu Punktes
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Scientific Computing, Theory and Data
    • Large Research Facilities
  • Facilities and InstrumentsÖffnen dieses Hauptmenu Punktes
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesÖffnen dieses Hauptmenu Punktes
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • New ProjectsÖffnen dieses Hauptmenu Punktes
    • SLS 2.0
    • IMPACT
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

Sie befinden sich hier:

  1. PSI Home
  2. Labs & User Services
  3. NUM
  4. LMX
  5. Laboratory for Multiscale materials eXperiments
  6. Solid State Chemistry Group

Sekundäre Navigation

Solid State Chemistry Group

  • About the SSC Group
  • People
    • Alumni
  • Research
  • Material Synthesis, Crystal Growth and Characterization Laboratory
    • Equipment
    • Schedules
      • D8
      • Laue
      • Orbis
      • PPMS
      • MPMS
    • Access rules
  • Scientific Highlights
  • Publications
  • SSC Laboratory Tour
  • Nützliche Links

  • Laboratory for Multiscale materials eXperiments
  • Physical Properties of Materials

Info message

Dieser Inhalt ist nicht auf Deutsch verfügbar.
ssc banner.jpg

Solid State Chemistry Group

at the Laboratory for Multiscale materials eXperiments

We are working on the synthesis and characterization of ceramic and single crystal materials with novel electronic and magnetic properties. Numerous complex oxide materials have been successfully crystallized by the Traveling Solvent Floating Zone (TSFZ) method using an optical furnace. This includes cuprates, manganates, orthoferrites, cobaltites, borates and phosphates. Novel chalcogenide iron superconductors have been synthesized as powders and single crystals (Bridgman method). read more


News

23. September 2021
RENiO3 single crystal

NCCR-MARVEL Highlight 2021

First-ever rare earth nickelate single crystals lead to first experimental evidence supporting predicted multiferroicity

Weiterlesen
26. April 2021

New SSC Access rules

Due to the Corona pandemic starting 1. May 2021, new access rules to the SSC user facilites will apply. More details can be found at https://www.psi.ch/de/lmx-ssc/access-rules.

Weiterlesen
16. Juli 2019

PhD Defence Fei Li

On 31.05.2019, Fei Li passed successfully his PhD defence at the ETH Materials Department. The title of his thesis is "Crystal and Magnetic Structure of R1/3Sr2/3FeO3 (R = La,Pr,Nd)”

Weiterlesen
18. März 2019

DGKK Award for young researchers 2019 for Pascal Puphal

Dr Pascal Puphal (currently a Postdoc at PSI, LMX, Solid State Chemistry Group) has recently been awarded with the DGKK young researcher price from the German Crystal Growth Community on his Ph.D. work performed in the group of Cornelius Krellner at the Geothe University Frankfurt am Main on the topic "Tuning two dimensional Cu-based quantum spin systems". The work covers the stabilization and proof of a 2D dimer structure by Sr substitution in Han Purple and the research of novel kagome materials of the prominent quantum spin liquid candidate herbertsmithite by the hydrothermal route.

Weiterlesen

Scientific Highlight

11. Juni 2021
Klein et al

RENiO3 Single Crystals (RE = Nd, Sm, Gd, Dy, Y, Ho, Er, Lu) Grown from Molten Salts under 2000 bar of Oxygen Gas Pressure

Schematic representation of the method used to grow RENiO3 nickelate single crystals covering the full 4f series and Y. This novel procedure, based on the use of moderate oxygen gas pressures (2000 bar), solvothermal growth in a temperature gradient, and highly reactive eutectic salt mixtures as fluxes, yields prismatic-shaped crystals with flat facets and sizes up to ∼75 μm.

 

Weiterlesen
14. April 2021
Jimenez

A quantum magnetic analogue to the critical point of water

At the liquid–gas phase transition in water, the density has a discontinuity at atmospheric pressure; however, the line of these first-order transitions defined by increasing the applied pressure terminates at the critical point, a concept ubiquitous in statistical thermodynamics. In correlated quantum materials, it was predicted and then confirmed experimentally that a critical point terminates the line of Mott metal–insulator transitions, which are also first-order with a discontinuous charge carrier density. In quantum spin systems, continuous quantum phase transitions have been controlled by pressure, applied magnetic field and disorder, but discontinuous quantum phase transitions have received less attention.

 

Weiterlesen
30. Oktober 2020
Shang et al npj

Re(1−x)Mox as an ideal test case of time-reversal symmetry breaking in unconventional superconductors

Non-centrosymmetric superconductors (NCSCs) are promising candidates in the search for unconventional and topological superconductivity. The α-Mn-type rhenium-based alloys represent excellent examples of NCSCs, where spontaneous magneticfields, peculiar to time-reversal symmetry (TRS) breaking, have been shown to develop in the superconducting phase. By converse, TRS is preserved in many other isostructural NCSCs, thus leaving the key question about its origin fully open. Here, we consider ...

 

Weiterlesen
21. September 2020
Paris et al PNAS

Strain engineering of the charge and spin-orbital interactions in Sr2IrO4

Understanding the relationship between entangled degrees of freedom (DOF) is a central problem in correlated materials and the possibility to influence their balance is promising toward realizing novel functionalities. In Sr2IrO4, the interaction between spin–orbit coupling and electron correlations induces an exotic ground state with magnetotransport properties promising for antiferromagnetic spintronics applications.

 

Weiterlesen
24. März 2020
Balsini PNAS

Electron–phonon-driven three-dimensional metallicity in an insulating cuprate

Elucidating the role of different degrees of freedom in a phase transition is crucial in the comprehension of complex materi- als. A phase transformation that attracts significant interest is the insulator-to-metal transition of Mott insulators, in which the electrons are thought to play the dominant role. Here, we use ultrafast laser spectroscopy and theoretical calculations ....

Weiterlesen
17. Januar 2020
destraz_natqm_2020

Magnetism and anomalous transport in the Weyl semimetal PrAlGe: possible route to axial gauge fields

In magnetic Weyl semimetals, where magnetism breaks time-reversal symmetry, large magnetically sensitive anomalous transport responses are anticipated that could be useful for topological spintronics. The identification of new magnetic Weyl semimetals is therefore in high demand, particularly since in these systems Weyl node configurations may be easily modified using magnetic fields. Here we explore experimentally the magnetic semimetal PrAlGe, and unveil a direct correspondence between easy-axis Pr ferromagnetism and anomalous Hall and Nernst effects. 

Weiterlesen
7. Januar 2020
puphal_prl_t.jpg

Topological Magnetic Phase in the Candidate Weyl Semimetal CeAlGe

We report the discovery of topological magnetism in the candidate magnetic Weyl semimetal CeAlGe. Using neutron scattering we find this system to host several incommensurate, square-coordinated multi-k⃗ magnetic phases below TN. The topological properties of a phase stable at intermediate magnetic fields parallel to the c axis are suggested by observation of a topological Hall effect. 

Weiterlesen
10. September 2019
guguchia_npj_t.jpg

Nodeless superconductivity and its evolution with pressure in the layered dirac semimetal 2M-WS2

Recently, the transition metal dichalcogenide (TMD) system 2M-WS2 has been identified as a Dirac semimetal exhibiting both superconductivity with the highest Tc ~ 8.5 K among all the TMD materials and topological surface states. Here we report on muon spin rotation (μSR) and density functional theory studies of microscopic SC properties and the electronic structure in 2M-WS2 at ambient and under hydrostatic pressures (pmax = 1.9 GPa).

Weiterlesen
21. Februar 2019
Photos of (a) the cast CeAlGe rod, and the floating-zone-grown crystals of (b) CeAlGe and (c) PrAlGe.

Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals RAlGe (R = Pr, Ce)

We explore two methods for single-crystal growth of the theoretically proposed magnetic Weyl semimetals RAlGe (R = Pr, Ce), which prove that a floating-zone technique, being both crucible- and flux-free, is crucial to obtain perfectly stoichiometric RAlGe crystals. In contrast, the crystals grown by a flux-growth technique tend to be Al-rich. We further present both structural and elemental analyses, along with bulk magnetization and electrical resistivity data on the crystals prepared by the floating-zone technique. Both systems with the intended 1:1:1 stoichiometry crystallize in the anticipated polar I41md (No. 109) space group, although neither displays the theoretically expected ferromagnetic ground state.

Weiterlesen

Sidebar

Contact

Solid State Chem. Group
Laboratory for Multiscale materials eXperiments
PSI
CH-5232 Villigen PSI
Switzerland


Head of Group
Dr. Ekaterina Pomjakushina
+41 56 310 32 07
ekaterina.pomjakushina@psi.ch

Homepage NUM

Research with Neutrons and Muons NUM Division at PSI


Open Positions

Job Opportunities at Research Division NUM.

PSI Scientific Reports

Archive 2006-2012. The Scientific Reports – containing accounts of research topics from all the different areas – provide an impression of the variety of subjects researched at PSI.

top

Fussbereich

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Schweiz

Telefon: +41 56 310 21 11
Telefax: +41 56 310 21 99

Der Weg zu uns
Kontakt

Besucherzentrum psi forum
Schülerlabor iLab
Zentrum für Protonentherapie
PSI Bildungszentrum
PSI Guest House (in english)
PSI Gastronomie
psi forum-Shop

 

Service & Support

  • Telefonbuch
  • User Office
  • Accelerator Status
  • Publikationen des PSI
  • Lieferanten
  • E-Rechnung
  • Computing
  • Sicherheit

Karriere

  • Arbeiten am PSI
  • Stellenangebote
  • Aus- und Weiterbildung
  • Berufsbildung
  • PSI Bildungszentrum

Für die Medien

  • Das PSI in Kürze
  • Zahlen und Fakten
  • Mediacorner
  • Medienmitteilungen
  • Social Media

Folgen Sie uns: Twitter (deutsch) LinkedIn Youtube Issuu RSS

Footer legal

  • Impressum
  • Nutzungsbedingungen
  • Editoren-Login