Direkt zum Inhalt
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Suche
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIÖffnen dieses Hauptmenu Punktes
    • Research Initiatives
    • Ethics and Research integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsÖffnen dieses Hauptmenu Punktes
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Scientific Computing, Theory and Data
    • Large Research Facilities
  • Facilities and InstrumentsÖffnen dieses Hauptmenu Punktes
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesÖffnen dieses Hauptmenu Punktes
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • New ProjectsÖffnen dieses Hauptmenu Punktes
    • SLS 2.0
    • IMPACT
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

Sie befinden sich hier:

  1. PSI Home
  2. Labs & User Services
  3. NUM
  4. LMX
  5. The Physical Properties of Materials Group

Sekundäre Navigation

The Physical Properties of Materials Group

  • About the PPM Group
    • Funding
  • People
    • Alumni
  • Instrumentation and Services
    • Equipment
  • Research
  • Featured Papers
  • Useful Links
  • Publications
  • Nützliche Links

  • Mesoscopic Systems
  • Thin Films and Interfaces
  • Solid State Chemistry
  • Laboratory for Multiscale materials eXperiments
  • Physical Properties of Materials
  • PSI Telefon Directory

Info message

Dieser Inhalt ist nicht auf Deutsch verfügbar.
PPM Group start page.jpg

The Physical Properties of Materials Group

The Physical Properties of Materials Group prepares and characterizes advanced materials featuring novel structural, electric and magnetic properties. For these fundamental studies we use in-house equipment in combination with experiments at the PSI large scale facilities. Our research is focused on the study of complex transition metal oxides with highly correlated electrons, mostly in powder or single crystalline form. This class of materials is characterized by the presence of competing interactions which often results in unusual electronic and magnetic properties. Such properties are both, challenging from a fundamental point of view and interesting for applications, especially in the fields of energy technologies, data storage and advanced electronics. Read more

Featured Papers

11. April 2022
Phase Diagram YBCuFO Weak FM linked spiral phase

Weak ferromagnetism linked to the high-temperature spiral phase of YBaCuFeO5

The layered perovskite YBaCuFeO5 is a rare example of a cycloidal spiral magnet whose ordering temperature Tspiral can be tuned far beyond room temperature by adjusting the degree of Cu2+/ Fe3+ chemical disorder in the structure. This unusual property qualifies this material as one of the most promising spin-driven multiferroic candidates. However, very little is known about the response of the spiral to magnetic fields, crucial for magnetoelectric cross-control applications. Using bulk magnetization and neutron powder diffraction measurements under magnetic fields up to 9 T, we report here a temperature-magnetic field phase diagram of this material. Besides revealing a strong stability of the spiral state, our data uncover the presence of weak ferromagnetism coexisting with the spiral modulation. Since ferromagnets can be easily manipulated with magnetic fields, this observation opens new perspectives for the control of the spiral orientation, directly linked to the polarization direction, as well as for a possible future use of this material in technological applications.

Weiterlesen
2. Juli 2021
phys_rev_res_2021_marisa

Raman spectroscopic evidence for multiferroicity in rare earth nickelate single crystals

The rare earth nickelates RNiO3 are metallic at high temperatures and insulating and magnetically ordered at low temperatures. The low temperature phase has been predicted to be type II multiferroic, i.e., ferroelectric and magnetic order are coupled and occur simultaneously. Confirmation of those ideas has been inhibited by the absence of experimental data on single crystals. Here we report on Raman spectroscopic data of RNiO3 single crystals (R = Y, Er, Ho, Dy, Sm, Nd) for temperatures between 10 and 1000 K. Entering the magnetically ordered phase we observe the appearance of a large number of additional vibrational modes, implying a breaking of inversion symmetry expected for multiferroic order.

 

Weiterlesen
11. Juni 2021
Klein et al

RENiO3 Single Crystals (RE = Nd, Sm, Gd, Dy, Y, Ho, Er, Lu) Grown from Molten Salts under 2000 bar of Oxygen Gas Pressure

The electronic properties of transition-metal oxides with highly correlated electrons are of central importance in modern condensed-matter physics and chemistry, both for their fundamental scientific interest and for their potential for advanced electronic applications. However, the design of materials with tailored properties has been restricted by the limited understanding of their structure–property relationships, which are particularly complex in the proximity of the regime where localized electrons become gradually mobile. RENiO3 perovskites, characterized by the presence of spontaneous metal to insulator transitions, are some of the most widely used model materials for the investigation of this region in theoretical studies. However, crucial experimental information needed to validate theoretical predictions is still lacking due to their challenging high-pressure synthesis, which has prevented to date the growth of sizable bulk single crystals with RE ≠ La, Pr, and Nd. Here we report the first successful growth of single crystals with RE = Nd, Sm, Gd, Dy, Y, Ho, Er, and Lu in sizes up to ∼75 μm, grown from molten salts in a temperature gradient under 2000 bar of oxygen gas pressure. The crystals display regular prismatic shapes with flat facets, and their crystal structures and metal–insulator and antiferromagnetic order transition temperatures are in excellent agreement with previously reported values obtained from polycrystalline samples. The availability of such crystals opens access to measurements that have hitherto been impossible to conduct. This should contribute to a better understanding of the fascinating properties of materials with highly correlated electrons and guide future efforts to engineer transition-metal oxides with tailored functional properties.

Weiterlesen
4. Juni 2021
ieee_marisa_2021

Roadmap on Magnetoelectric Materials and Devices

The possibility of tuning the magnetic properties of materials with voltage (converse magnetoelectricity) or generating electric voltage with magnetic fields (direct magnetoelectricity) has opened new avenues in a large variety of technological fields, ranging from information technologies to healthcare devices and including a great number of multifunctional integrated systems, such as mechanical antennas, magnetometers, and radio frequency (RF) tunable inductors, which have been realized due to the strong strain-mediated magnetoelectric (ME) coupling found in ME composites. The development of single-phase multiferroic materials (which exhibit simultaneous ferroelectric and ferromagnetic or antiferromagnetic orders), multiferroic heterostructures, as well as progress in other ME mechanisms, such as electrostatic surface charging or magneto-ionics (voltage-driven ion migration), have a large potential to boost energy efficiency in spintronics and magnetic actuators. This article focuses on existing ME materials and devices and reviews the state of the art in their performance.

 

Weiterlesen
7. April 2021
angewandte_chemie_marisa_2021

Correlation between Oxygen Vacancies and Oxygen Evolution Reaction Activity for a Model Electrode: PrBaCo2O5+δ

The role of the perovskite lattice oxygen in the oxygen evolution reaction (OER) is systematically studied in the PrBaCo2O5+δ family. The reduced number of physical/chemical variables combined with in-depth characterizations such as neutron dif-fraction, O K-edge X-ray absorption spectroscopy (XAS), electron energy loss spectroscopy (EELS), magnetization and scanning transmission electron microscopy (STEM) studies, helps investigating the complex correlation between OER activity and a single perovskite property, such as the oxygen content. Larger amount of oxygen vacancies appears to facilitate the OER, possibly contributing to the mechanism involving the oxidation of lattice oxygen, i.e., the lattice oxygen evolution reaction (LOER). Furthermore, not only the number of vacancies but also their local arrangement in the perovskite lattice influences the OER activity, with a clear drop for the more stable, ordered stoichiometry.

 

Weiterlesen

Mit Sidebar

Contact

Physical Properties of Materials Group
Paul Scherrer Institut
5232 Villigen PSI
Switzerland
Homepage

Dr. Marisa Medarde
Head of Group
WLGA/027
tel: +41 56 310 3283
fax: +41 56 310 2688
marisa.medarde@psi.ch

Homepage PSI

Paul Scherrer Institut

Homepage NUM

Research with Neutrons and Muons NUM Division at PSI

Homepage LMX

Laboratory for Multiscale materials eXperiments

Open Positions

Job Opportunities at Research Division NUM.
top

Fussbereich

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Schweiz

Telefon: +41 56 310 21 11
Telefax: +41 56 310 21 99

Der Weg zu uns
Kontakt

Besucherzentrum psi forum
Schülerlabor iLab
Zentrum für Protonentherapie
PSI Bildungszentrum
PSI Guest House (in english)
PSI Gastronomie
psi forum-Shop

 

Service & Support

  • Telefonbuch
  • User Office
  • Accelerator Status
  • Publikationen des PSI
  • Lieferanten
  • E-Rechnung
  • Computing
  • Sicherheit

Karriere

  • Arbeiten am PSI
  • Stellenangebote
  • Aus- und Weiterbildung
  • Career Center
  • Berufsbildung
  • PSI Bildungszentrum

Für die Medien

  • Das PSI in Kürze
  • Zahlen und Fakten
  • Mediacorner
  • Medienmitteilungen
  • Social Media

Folgen Sie uns: Twitter (deutsch) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Impressum
  • Nutzungsbedingungen
  • Editoren-Login