MS detector 01.jpg

Laboratory for Synchrotron Radiation
Condensed Matter (LSC)

The research focusses on condensed matter and materials science using synchrotron radiation. For this we use the whole range of spectroscopy, imaging and diffraction techniques.

Current Highlights and News

19. July 2016

Spin-wave.jpg

A mini antenna for the data processing of tomorrow

The use of spin-wave signals in future information processing devices can substantially reduce power consumption over present charge current based technologies. As part of an international research venture, scientists at PSI now introduced a concept to generate spin waves with nanoscale wavelengths exploiting the driven dynamics of magnetic vortex cores in magnetic heterostructures.

19. July 2016

figure.png

Magnesium Oxide Boosts the Hysteresis of Single-Molecule Magnets

Researchers from PSI and EPFL have demonstrated that the magnetization hysteresis and remanence of TbPc2 single-molecule magnets drastically depends on the substrate on which they are deposited. If a few atomic layers thick magnesium oxide film grown on a silver substrate is used, a record wide hysteresis and record large remanence can be obtained. Single-molecule magnets are attractive for molecular spintronics applications such as information processing or storage.

14. July 2016

bbo-bands.png

Shedding light on the origins of high-Tc superconductivity in bismuth oxides

Researchers have overcome a number of challenges in order to employ an advanced probe in the study of an unusual material, barium bismuth oxide (BaBiO3) – an insulating parent compound of a family of high-temperature superconductors known since the late 80s. In order to finally realize the experiments, the researchers grew and studied thin films of the material completely in situ under ultrahigh vacuum conditions. The results show that superconductivity in bismuth oxides emerges out of a novel insulating phase, where hole pairs located on combinations of the oxygen orbitals are coupled with distortions of the crystal lattice.

23. June 2016

Figure.png

Itinerant and Localized Magnetization Dynamics in Antiferromagnetic Holmium

Resonant magnetic scattering performed at the x-ray free electron laser facility LCLS (USA) has been used to investigate the magnetization dynamics of elemental Holmium. It is found that the demagnetization of conduction electrons and localized 4f magnetic moments have the same temporal evolution showing a strong coupling between the different magnetic moments.

11. April 2016

InteractionSrTiO3.png

Tailoring Novel Superconductivity

The Angle Resolved Photoemission Spectroscopy (ARPES) measurements performed on 2DEL at STO surface revealed that, at low carrier density, electrons are always accompanied by a quantized dynamic lattice deformation. Together with the electron, these phonon-cloud formed a new composite quasiparticle called Fröhlich polaron.

17. March 2016

teaser picture

New particle could form the basis of energy-saving electronics

Media Releases Research Using Synchrotron Light Materials Research Matter and Material

The Weyl fermion, just discovered in the past year, moves through materials practically without resistance. Now researchers are showing how it could be put to use in electronic components.

27. January 2016

teaser picture

Slowed down current could point the way to energy-saving computers

Media Releases Matter and Material Research Using Synchrotron Light

Computers and other electronic devices account for a substantial portion of worldwide energy use. With today’s technologies, it is not possible to reduce this energy consumption significantly any further; chips in the energy-saving electronics of the future will hence have to be made from novel materials. Researchers at the Paul Scherrer Institute PSI have now found important clues in the search for such materials.