lns header2.png

LNS: Laboratory for Neutron Scattering and Imaging

The Laboratory for Neutron Scattering and Imaging (LNS) at the Paul Scherrer Institute is responsible for the scientific exploitation, operation and development of neutron scattering and imaging instruments at the Swiss Spallation Neutron Source (SINQ). The team of 50 senior scientists, postdoctoral researchers and PhD students further collaborates on diverse research projects ranging from modern topics in condensed matter physics and materials science to pressing questions in energy research and health care. read more

PhD, Master, Bachelor or Semester projects at the LNS

We offer students the possibility to do their PhD or educational research in our lab. See Teaching and Education for detailed information on Master/Diploma thesis, Bachelor/Semester work and practical courses at the LNS. Currently we have open positions for


1. January 2017


Christian Rüegg new head of NUM division

Prof. Dr. Christian Rüegg has been appointed as new head of the division NUM (Research with Neutrons and Muons) starting on January 1, 2017. Christian studied Physics at ETH Zurich, performed his PhD thesis at the Laboratory for Neutron Scattering and received his PhD in 2005. After that he moved to the London Centre for Nanotechnology of University College and Imperial College London, first as a PostDoc, later as Royal Society University Research Fellow, Lecturer and Reader. Since 2011 Christian was head of the Laboratory for Neutron Scattering and Imaging (LNS) within NUM. Furthermore he is full professor at the University of Geneva. Christian will succeed Kurt Clausen, who will retire after 13 years as head of the NUM division.

24. November 2016


Electromagnons probed by inelastic X-ray scattering in LiCrO2

S. Tóth et al., Nature Communications 7, 13547 (2016). Lattice vibrations (phonons) in crystals are typically weakly interacting with the electronic and magnetic degrees of freedom, such as charge and spin fluctuations. Researchers of PSI together with collaborators from EPF Lausanne, Japan and USA discovered an unexpectedly strong coupling between lattice vibrations and spin fluctuations in the quantum magnet LiCrO2. The observed magnetoelastic waves or electromagnons carry both electric and magnetic dipole moment. This was proven using complementary studies with non-resonant inelastic X-ray scattering at ESRF and on the EIGER thermal neutron triple-axis-spectrometer at SINQ, PSI. The experimental data together with model calculations revealed the underlying coupling mechanism. These results will help to develop better multiferroic materials and demonstrate that inelastic X-ray scattering can probe magnetism with high energy resolution in special systems in strong spin-lattice coupling.

31. October 2016


Spiral spin-liquid and the emergence of a vortex-like state in MnSc2S4

S. Gao et al., Nature Physics (2016). In conventional paramagnets spins fluctuate randomly, which leads to a completely disordered state. This is not the case for spiral spin-liquids, where spins fluctuate as correlated spirals. Recently researchers of LNS together with collaborators from Germany and France experimentally observed the spiral spin-liquid state in MnSc2S4 validating the theoretical prediction made almost 10 years ago by Bergman et al. Besides, an emergent vortex-like triple-q phase was discovered under a magnetic field, establishing the A-site spinels as promising systems to realize the magnetic vortex lattice. This project is a part of a grant on Quantum Frustration in Model Magnets funded by the Swiss National Science Foundation.

26. October 2016


100 Hz neutron radiography at the BOA beamline using a parabolic focussing guide

P. Trtik, et al., MethodsX 3, 535 (2016). The recent developments in scientific complementary metal oxide semiconductor (sCMOS) detector technology allow for imaging of relevant processes with very high temporal resolution with practically negligible readout time. However, it is neutron intensity that limits the high temporal resolution neutron imaging. In order to partially overcome the neutron intensity problem for the high temporal resolution imaging, a parabolic neutron focussing guide was utilized in the test arrangement and placed upstream the detector in such a manner that the focal point of the guide was positioned slightly behind the scintillator screen. In such a test arrangement, the neutron flux can be increased locally by about one order of magnitude, albeit with the reduced spatial resolution due to the increased divergence of the neutron beam. In a pilot test application, an in-situ titration system allowing for a remote delivery of well-defined volumes of liquids onto the sample stage was utilized. The process of droplets of water (H2O) falling into the container filled with heavy water (D2O) and the subsequent process of the interaction and mixing of the two liquids were imaged with temporal resolution of 0.01 s.

26. October 2016


Progress in High-resolution Neutron Imaging at the Paul Scherrer Institut – The Neutron Microscope Project

P. Trtik & E.H. Lehmann, Journal of Physics – Conference Series 746, 012004 (2016). The recent improvement on the capability of neutron imaging that allows acquiring neutron images with isotropic spatial resolution of about 5 micrometres is demonstrated. This is achieve by combining the tailor-made high-numerical aperture magnifying optics together with a thin isotopically-enriched 157Gd2O2S:Tb scintillator screens (see Trtik & Lehmann, NIM-A 788 (2015) 67-70). The newly achieved level of the spatial resolution represents about 30% enhancement compared to the first prototype (see Trtik et al, Physics Procedia 69 (2015) 169-176) and approximately six-fold enhancement in the spatial resolution capabilities available for the general users community at PSI before the start of the Neutron Microscope project.