Membranes and Electrochemical Cells

Our mission is to create innovation in the area of polymer electrolyte materials for electrochemical applications, notably fuel cells, electrolysis cells, lithium batteries, and redox flow cells. We aim to prepare polymers with desired functionalities for the respective application and operating conditions, using commercially available and low-cost materials (base films, monomers and additives) and industrially viable processing techniques. Furthermore, we develop dedicated diagnostic methods to study limitations in cell performance and aging of materials and components.

Expertise

Our synthetic strategy is based on the preparation and functionalization of polymer films via radiation-induced grafting to obtain membranes containing ionic sites. Activation of the base polymer film can be done using an electron beam (performed externally). For surface grafting, the film is activated in a plasma chamber. Activated films are stored in a fridge at a temperature of -80°C. For the grafting reaction, a wide range of vinyl monomers amenable to radical polymerization can be used, such as styrenes and acrylics. Post-treatment of grafted films may involve various chemical processing steps, such as sulfonation to introduce proton exchange sites.

The laboratory has a wide range of characterization methods for ex situ characterization of starting materials, intermediates and membranes: infrared and Raman spectroscopy for composition analysis, SEM-EDX, XPS, DSC/TGA, tensile testing machine, etc. The conductivity of membranes is measured using ac impedance spectroscopy (in-plane or through-plane). In addition, we have a well-equiped fuel cell test infrastructure with test benches for single cells up to stacks for 30 kW power output. We aim to understand component and cell performance characteristics and limitations thereof, in particular aging phenomena of membranes and electrodes under application-relevant or accelerated test conditions.

The microstructure of ion-containing polymers is characterized by a phase-separated morphology with feature sizes in the range of nanometers or tens of nanometers. The structure of the ion-rich and ion-poor domains governs the properties of the material, in particular the ion conductivity. Together with our colleagues from the Laboratory for Neutron Scattering, we probe the morphology of ion-containing polymers using small-angle x-ray or neutron scattering. For instance, the volume fraction and connectivity of the ion-rich phase is strongly influenced by the degree of grafting and the type of monomers used.

Research Team

Open Positions

We have regular openings for student's projects in different areas: fuel cells, electrolyzers, redox flow cells on topics ranging from materials synthesis and characterization to test system design and implementation.

Internship or Master thesis project

Projects

Project Description Duration Contact





EU-NOVEL Novel materials and system designs for low cost, efficient and durable polymer electrolyte water electrolyzers.

European Union, FCH-JTI OG-5421
2012-2016 Lorenz Gubler

NF-Polymer Electrolytes Lithium conducting polymer electrolytes with polysulphide barrier
properties.

Swiss National Science Foundation OG-5413 , OG-5421
2013-2015 Lorenz Gubler, Sigita Urbonaite

HT-PEFC Aging Finding limitations in lifetime in high temperature polymer electrolyte fuel cells (HT-PEFCs), which use a phosphoric acid doped polymer as proton conducting membrane.

BASF Fuel Cell OG-5420 , OG-5421 , OG-5422
2012-2015 Thomas J. Schmidt

NF-PorGraft Synthesis and characterization of porous materials with patterned wettabillity for advanced fuel cell water
management strategies

Swiss National Science Foundation OG-5420 , OG-5421
2013-2016 Pierre Boillat, Lorenz Gubler

REPCOOL Redox flow electrochemistry for power delivery and cooling (REPCOOL) triggers a paradigm shift in powering and cooling computers: Liquid redox electrolytes transported through microfluidic chips provide both power and cooling via the same fluidic pathway.

REPCOOL is funded by the Sinergia program of the Swiss National Science Foundation and comprises leading research teams from four institutions based in Switzerland: ETH Zurich, Paul Scherrer Institut, USI Lugano and IBM Research.

SNF-Sinergia OG-5420 , OG-5421
2013-2016 Thomas J. Schmidt

CROSS LEC-LNS Promote the understanding of Structure-Property Correlations of Ion-Containing Polymers for
Fuel Cells based on small-angle scattering techniques (SANS, SAXS)

Collaboration between the Electrochemistry Laboratory and the Laboratory for Neutron Scattering at PSI, together with the Adolphe Merkle Institute (AMI)

Paul Scherrer Institut and Swiss National Science Foundation OG-5421
2013-2016 Lorenz Gubler

HyForm Formic acid - chemical storage of electrical energy and on-site hydrogen production for use in PEM fuel cells

Partners: EPFL, Granit SA, ZHAW

CCEM, KTI OG-5421
2014-2015 Lorenz Gubler

NF-HT-PEFC Development of new types of proton conducting membranes based on phosphoric acid (PA) doped polymers for the high-temperature polymer electrolyte fuel cell (HT-PEFC) with improved acid retention capabilities and superior mechanical robustness compared to the conventionally used PA-doped polybenzimidazole (PBI) membranes.

Swiss National Science Foundation OG-5421
2015-2017 Lorenz Gubler

ELYDEG Understanding of degradation signatures in water electrolyzers operated with variable input

Swiss Federal Office of Energy OG-5421
2015-2018 Lorenz Gubler

RFBmem Chemistry and Stability of Grafted Membranes for Redox Flow Batteries

Swiss Federal Office of Energy OG-5421
2016-2019 Lorenz Gubler

Recent Publications

Earlier publications can be found in our literature data base


  • Bifunctional ion-conducting polymer electrolyte for the vanadium redox flow battery with high selectivity O. Nibel, T.J. Schmidt, L. Gubler
    J. Electrochem. Soc. 163 (13), A2563-A2570 (2016)
    DOI: 10.1149/2.0441613jesOG-5421
  • Stability and degradation mechanisms of radiation-grafted polymer electrolyte membranes for water electrolysis A. Albert, T. Lochner, T.J. Schmidt, L. Gubler
    ACS Appl. Mater. Interfaces 8 (24), 15297-15306 (2016)
    DOI: 10.1021/acsami.6b03050OG-5421
  • Radiation grafted ion-conducting membranes: The influence of variations in base film nanostructure V. Sproll, G. Nagy, U. Gasser, J.P. Embs, M. Obiols-Rabasa, T.J. Schmidt, L. Gubler, S. Balog
    Macromolecules 49 (11), 4253–4264 (2016)
    DOI: 10.1021/acs.macromol.6b00180OG-5421
  • Fuel electrode carbon corrosion in high temperature polymer electrolyte fuel cells—crucial or irrelevant? T. Engl, L. Gubler, T.J. Schmidt
    Energy Technol. 4 (1), 65-74 (2016)
    DOI: 10.1002/ente.201500354OG-5421
  • Grafting design: a strategy to increase the performance of radiation-grafted membranes V. Sproll, T.J. Schmidt, L. Gubler
    Polym. Int. 65, 174–180 (2016)
    DOI: 10.1002/pi.5041OG-5421
  • Structure–property correlations of ion-containing polymers for fuel cell applications V. Sproll, G. Nagy, U. Gasser, S. Balog, S. Gustavsson, T.J. Schmidt, L. Gubler
    Radiat. Phys. Chem. 118, 120–123 (2016)
    DOI: 10.1016/j.radphyschem.2015.01.036OG-5421
  • Radiation-grafted polymer electrolyte membranes for water electrolysis cells: Evaluation of key membrane properties A. Albert, A.O. Barnett, M.S. Thomassen, T.J. Schmidt, L. Gubler
    ACS Appl. Mater. Interfaces 7, 40, 22203-22212 (2015)
    DOI: 10.1021/acsami.5b04618OG-5421
  • Effects of temperature and catalyst type on chemical degradation of radiation grafted membranes in PEFCs Z. Zhang, Y. Buchmüller, L. Bonorand, A. Wokaun, T.J. Schmidt, L. Gubler
    Fuel Cells 15, 4, 610-618 (2015)
    DOI: 10.1002/fuce.201500019OG-5421
  • From electrochemical interface to interphase (2D->3D) on ionomer membranes Y. Buchmüller, R. Hafner, A. Wokaun, T.J. Schmidt, L. Gubler
    ChemElectroChem 2, 338–342 (2015)
    DOI: 10.1002/celc.201402332OG-5421
  • Think Different! Carbon corrosion mitigation strategy in high temperature PEFC: A rapid aging study T. Engl, L. Gubler, T.J. Schmidt
    J. Electrochem. Soc. 162, 3, F291-F297 (2015)
    DOI: 10.1149/2.0681503jesOG-5421
  • Antioxidants in non-perfluorinated fuel cell membranes: prospects and limitations Y. Buchmüller, Z. Zhang, A. Wokaun, L. Gubler
    RSC Adv. 4, 51911–51915 (2014)
    DOI: 10.1039/c4ra09792kOG-5421
  • Mass spectrometry to quantify and compare the gas barrier properties of radiation grafted membranes and Nafion Z. Zhang. R. Chattot, L. Bonorand, K. Jetsrisuparb, Y. Buchmüller, A. Wokaun, L. Gubler
    J. Membr. Sci. 472, 55–66 (2014).
    DOI: 10.1016/j.memsci.2014.08.020OG-5421
  • Polymer-bound antioxidants in grafted membranes for fuel cells Y. Buchmüller, A. Wokaun, L. Gubler
    J. Mater. Chem. A 2, 5870-5882 (2014).
    DOI: 10.1039/c3ta15321eOG-5421
  • Structure of the aqueous phase and its impact on the conductivity of graft copolymer ionomers at saturation S. Balog, K. Jetsiruparb, U. Gasser, G.G. Scherer, L. Gubler
    Polymer 55, 3026-3036 (2014).
    DOI: 10.1016/j.polymer.2014.05.004OG-5421
  • Shape memory effect in radiation grafted ion exchange membranes D. Henkensmeier, L. Gubler
    J. Mater. Chem. A 2, 9482-9485 (2014).
    DOI: 10.1039/C4TA01467GOG-5421
  • On the positive effect of CO during Start/Stop in high-temperature polymer electrolyte fuel cells T. Engl, J. Käse, L. Gubler, T.J. Schmidt
    ECS Electrochem. Lett. 3 (7), F47-F49 (2014).
    DOI: 10.1149/2.0011407eelOG-5421
  • Polymer design strategies for radiation-grafted fuel cell membranes L. Gubler
    Adv. Energy Mater. 4 (3), 1300827 (2014).
    DOI: 10.1002/aenm.201300827OG-5421
  • Proton conducting membranes prepared by radiation grafting of styrene and various comonomers K. Jetsrisuparb, S. Balog, C. Bas, L. Perrin, A. Wokaun, L. Gubler
    Eur. Polym. J. 53, 75-89 (2014)
    DOI: 10.1016/j.eurpolymj.2014.01.021OG-5421
  • Radiation grafted membranes for fuel cells containing styrene sulfonic
    acid and nitrile comonomers
    K. Jetsrisuparb, H. Ben youcef, A. Wokaun, L. Gubler
    J. Membr. Sci. 450, 28–37 (2014)
    DOI: 10.1016/j.memsci.2013.08.037OG-5421
  • Fuel cell membranes based on grafted and post-sulfonated glycidyl methacrylate (GMA) Y. Buchmüller, A. Wokaun, L. Gubler
    Fuel Cells 13 (6), 1177-1185 (2013).
    DOI: 10.1002/fuce.201300144OG-5421
  • Uniaxial deformation and orientation of ethylene–tetrafluoroethylene films D. De Focatiis, L. Gubler
    Polym. Test. 32, 1423–1435 (2013).
    DOI: 10.1016/j.polymertesting.2013.09.007OG-5421
  • Radiation grafted ETFE-graft-poly(α-methylstyrenesulfonic
    acid-co-methacrylonitrile) membranes for fuel cell applications
    D. Henkensmeier, H. Benyoucef, F. Wallasch, L. Gubler
    J. Membr. Sci. 447, 228–235 (2013).
    DOI: 10.1016/j.memsci.2013.07.034OG-5421
  • Reactions of the tetraoxidosulfate(˙−) and hydroxyl radicals with poly(sodium α-methylstyrene sulfonate) S.M. Dockheer, L. Gubler, W.H. Koppenol
    Phys. Chem. Chem. Phys. 15, 4975-4983 (2013).
    DOI: 10.1039/C3CP44341HOG-5421
  • Viscoelastic phase diagram of fluorinated and grafted polymer films and proton-exchange membranes for fuel cell applications Y. Leterrier, J. Thivolle, F. Oliveira, J.-A. Manson, L. Gubler, H. Ben youcef, L. Bonorand, G. Scherer
    J. Polym. Sci., Part B: Polym. Phys. 51, 1139–1148 (2013).
    DOI: 10.1002/polb.23309OG-5421
  • Structure of the hydrophilic phase and its impact on the conductivity
    of graft copolymer ionomers at low hydration level
    S. Balog, U. Gasser, K. Jetsrisuparb, L. Gubler
    Polymer 54, 4266-4275 (2013).
    DOI: 10.1016/j.polymer.2013.06.015OG-5421
  • Study of nitrile-containing proton exchange membranes prepared by radiation grafting: Performance and degradation in the polymer electrolyte fuel cell Z. Zhang, K. Jetsrisuparb, A. Wokaun, L. Gubler
    J. Power Sources 243, 306-316 (2013).
    DOI: 10.1016/j.jpowsour.2013.06.009OG-5421
  • Degradation study of radiation grafted membranes under low humidity conditions in polymer electrolyte fuel cells Z. Zhang, Y. Buchmüller, A. Wokaun, L. Gubler
    ECS Electrochemistry Letters 2 (10), F69-F72 (2013).
    DOI: 10.1149/2.002310eelOG-5421