Scientific Highlights

Datum

Nanotechnology enables new insights into chemical reactions

Media Releases Energy and Climate Research with light Micro- and Nanotechnology

Eighty percent of all products of the chemical industry are manufactured with catalytic processes. Catalysis is also indispensable in energy conversion and treatment of exhaust gases. Industry is always testing new substances and arrangements that could lead to new and better catalytic processes. Researchers of the Paul Scherrer Institute PSI in Villigen and ETH Zurich have now developed a method for improving the precision of such experiments, which may speed up the search for optimal solutions.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.

Can a metal nanotip array device be a low-emittance and coherent cathode?

A nanofabricated low emittance field emitter array cathode was demonstrated for the first time, and successfully applied to observe the low-energy electron diffraction from suspended monolayer graphene. The work has an impact on the future development of compact X-ray free electron lasers, THz/RF vacuum electronic sources, and ultrafast electron imaging and diffraction experiments.

Read more
Sahan Ranamukhaarachchi, award winner

Technology award for microneedle-optofluidic sensor system

Sahan Ranamukhaarachchi, PhD student from UBC in Vancouver, won the 2016 "Brian L. Barge Award for Excellence in Microsystems Integration" for his work on a biosensing platform with integrated hollow microneedles carried out at PSI in 2015 in collaboration with Dr. Victor Cadarso and Dr. Celestino Padeste.

Read more
optofluidic.jpg

Therapeutic drug monitoring in sub-nanoliter volumes

A promising system for painless and minimally-invasive therapeutic drug monitoring has been demonstrated. The proposed device combines biofunctionalized hollow microneedles with an optofluidic system to measure drug concentrations in volumes as small as 0.6 nL.

Read more

Controlling Quantum States Atom by Atom

A method to precisely alter the quantum mechanical states of electrons within an array of quantum boxes has been developped by an international consortium also including PSI. The method can be used to investigate the interactions between various types of atoms and electrons, which is essential for future quantum technologies.

Read more

Experiment in a hovering droplet

Media Releases Research with light Biology Health Innovation

At the PSI, the exact structure of proteins is deciphered in the standard way, with X-rays. Now two PSI researchers have used a clever trick to advance this method further: Instead of pinning down the proteins, they are studying them within a levitating drop of liquid.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.

A micrometer-sized model of the Matterhorn

Media Releases Future Technologies Materials Research Micro- and Nanotechnology

Researchers at the Paul Scherrer Institute have produced large numbers of detailed models of the Matterhorn, each one less than a tenth of a millimetre in size. With this, they demonstrated how 3-D objects so delicate could be mass-produced. Materials whose surface is covered with a pattern of such tiny 3-D structures often have special properties, which could for example help to reduce the wear and tear of machine parts.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.