News & Events

Memory-Effekt nun auch bei Lithiumionen-Batterien nachgewiesen

Medienmitteilungen Energie und Klima Industriezusammenarbeit

Lithiumionen-Batterien dienen als leistungsstarke Energiespeicher in vielen kommerziellen Elektronikgeräten. Sie können viel Energie auf kleinem Raum und bei relativ geringem Gewicht fassen, so viel steht fest. Zudem eilt ihnen der gute Ruf voraus, keinen Memory-Effekt aufzuweisen. Darunter verstehen Fachleute eine Abweichung der Arbeitsspannung der Batterie, die bei unvollständigem Laden bzw. Entladen auftritt und dazu führen kann, dass die gespeicherte Energie nur teilweise nutzbar und der Ladezustand der Batterie nicht zuverlässig abzuschätzen ist. Forscher des Paul Scherrer Instituts PSI haben nun, zusammen mit Kollegen des Toyota-Forschungslabors in Japan, bei einem weit verbreiteten Typ der Lithiumionen-Batterie doch einen Memory-Effekt entdeckt. Besonders hohe Relevanz besitzt der Fund im Hinblick auf den bevorstehenden Einzug der Lithiumionen-Batterien in den Elektromobilitätsmarkt. Die Arbeit erschien heute in der Fachzeitschrift Nature Materials

Weiterlesen
Dies ist ein Text aus dem PSI-Medien-Archiv. Die Inhalte sind möglicherweise veraltet.
SEM picture, bent electrode sheet, and cyclic voltammogram of GOPpr

Partially reduced graphene oxide paper: a thin film electrode for electrochemical capacitors

One way to utilize graphene and its’ outstanding specific surface area of 2630 m2g-1 for supercapacitor electrodes is by preparing a so called free-standing graphene paper. Such a flexible, conductive graphene-paper electrode was prepared by a flow-directed filtration of graphene oxide dispersion followed by a gentle thermal reduction treatment of the filtrate. The prepared partially reduced graphene oxide paper (GOPpr) showed a dense packing of graphene sheets with a distinct interlayer distance of 4.35 Å.

Weiterlesen

Flow modeling in gas diffusion layers of PEFCs at the micro- and mesoscale

he optimization of thermochemical and electrochemical conversion systems is of high importance for a sustainable energy future society. Of particular interest regarding the performance of polymer electrolyte fuel cells (PEFCs) is the study of the gas flow in the gas diffusion layers (GDL). More specifically, permeability and diffusivity measurements in a model PEFC under normal operating conditions are highly desirable. As laboratory-measurements of these quantities under such conditions are very demanding, an alternative is the use of computer-based simulations.

Weiterlesen
X-Tomo.jpg

X-Ray Tomography of Water in Operating Fuel Cell

Polymer electrolyte fuel cells (PEFC) convert the chemical energy of hydrogen with a high efficiency (40-70 %) directly into electricity. The product of the overall reaction is water, produced at the cathode of the cell. The interaction of liquid water with the porous structures of the cell is one of the mechanisms in the PEFC that are commonly believed to be key for further optimization with regard to performance, durability and cost.

Weiterlesen
localcurrent.jpg

Local current measurement in PEFC

Major barriers for a successful commercialization of Polymer Electrolyte Fuel Cells (PEFCs) are insufficient lifetime and high cost of platinum catalyst. A comprehensive understanding of aging and transport phenomena on all relevant length scales is a key to improve durability and to reduce precious metal loading. Flow fields as used in PEFCs for the distribution of the reactant gases over the electrode area cause inhomogeneities. The importance of down the channel inhomogeneities has been realized.

Weiterlesen