Scientific Highlights and News

Magnetic hysteresis of a submonolayer of TbPc2 molecules on magnesium oxide.

Magnesium Oxide Boosts the Hysteresis of Single-Molecule Magnets

Researchers from PSI and EPFL have demonstrated that the magnetization hysteresis and remanence of TbPc2 single-molecule magnets drastically depends on the substrate on which they are deposited. If a few atomic layers thick magnesium oxide film grown on a silver substrate is used, a record wide hysteresis and record large remanence can be obtained. Single-molecule magnets are attractive for molecular spintronics applications such as information processing or storage.

Shedding light on the origins of high-Tc superconductivity in bismuth oxides

Researchers have overcome a number of challenges in order to employ an advanced probe in the study of an unusual material, barium bismuth oxide (BaBiO3) – an insulating parent compound of a family of high-temperature superconductors known since the late 80s. In order to finally realize the experiments, the researchers grew and studied thin films of the material completely in situ under ultrahigh vacuum conditions. The results show that superconductivity in bismuth oxides emerges out of a novel insulating phase, where hole pairs located on combinations of the oxygen orbitals are coupled with distortions of the crystal lattice.

optofluidic.jpg

Therapeutic drug monitoring in sub-nanoliter volumes

A promising system for painless and minimally-invasive therapeutic drug monitoring has been demonstrated. The proposed device combines biofunctionalized hollow microneedles with an optofluidic system to measure drug concentrations in volumes as small as 0.6 nL.

Controlling Quantum States Atom by Atom

A method to precisely alter the quantum mechanical states of electrons within an array of quantum boxes has been developped by an international consortium also including PSI. The method can be used to investigate the interactions between various types of atoms and electrons, which is essential for future quantum technologies.

3D rendering of a portion of about 20 micron diameter of the cream cheese-like food system used for this study. Rendering by Liborius ApS.

How does food look like on the nanoscale?

The answer to this question could save food industry a lot of money and reduce food waste caused by faulty production. Researchers from the University of Copenhagen and the Paul Scherrer Institut have obtained a 3D image of food on the nanoscale using ptychographic X-ray computed tomography. This work paves the way towards a more detailed knowledge of the structure of complex food systems.

Tailoring Novel Superconductivity

The Angle Resolved Photoemission Spectroscopy (ARPES) measurements performed on 2DEL at STO surface revealed that, at low carrier density, electrons are always accompanied by a quantized dynamic lattice deformation. Together with the electron, these phonon-cloud formed a new composite quasiparticle called Fröhlich polaron.

The diet in many developing countries is lacking zinc, but researchers have just solved the riddle of how to get more zinc into crop seeds. The discovery has been published in Nature Plants, and the research was led by University of Copenhagen. Above picture shows microscopic chemical images of a cross-section through a mutant seed. From left to right and top to bottom: Ca, P, Fe, Zn, MnCaFe, S, K, Cu, Mn. Image courtesy of C. Larue, Uni. Toulouse. Data collected at microXAS (Swiss Light Source). Scale bar

Researchers find key to zinc rich plants to combat malnutrition

The diet in many developing countries is lacking zinc, but researchers have just solved the riddle of how to get more zinc into crop seeds. The discovery has been published in Nature Plants, and the research was led by University of Copenhagen.By Johanne Uhrenholt Kusnitzoff

Watching lithium move in battery materials

In order to understand limitations in current battery materials and systematically engineer better ones, it is helpful to be able to directly visualize the lithium dynamics in materials during battery charge and discharge. Researchers at ETH Zurich and Paul Scherrer Institute have demonstrated a way to do this.

Kovalenko 2016 ncomms10766-f2.jpg

High-performance thermoelectric nanocomposites from nanocrystal building blocks

Using an assembly of colloidal nanocrystals a Ag-PbS nanocomposite was produced with increased thermoelectic figures of merit up to 1.7K at 850 K. EXAFS spectroscopy at the Ag K-edge was essential to show that Ag does not dissolve in PbS nanoparticles but preserved the individual nanodomains. This reduces the PbS intergrain energy barriers for charge transport

Virtual section through the middle of a seed from the Early Cretaceous exposing embryo and nutrient storage tissue. The tiny embryo shown in 3D has two rudimentary cotyledon primordia documenting the dicotyledonous nature of this extinct angiosperm. The fossil is reconstructed from synchrotron radiation X-ray tomographic microscopy measurements performed at the Tomcat beamline at the Swiss Light Source. Image: Else Marie Friis

Preserved Embryos Illustrate Seed Dormancy in Early Angiosperms

The discovery of exceptionally well-preserved, tiny fossil seeds dating back to the Early Cretaceous corroborates that flowering plants were small opportunistic colonizers at that time, according to a new Yale-led study.

Three-dimensional rendering of two cells in their medium confined in a glass microcapillary of about 18 micron diameter. Colors indicate different organelle types with different mass densities.

Mass density distribution of intact cell ultrastructure

The determination of the mass density of cellular compartments is one of the many analytical tools that biologists need to unravel the extremely complex structure of biological systems. Cryo X-ray nanotomography reveals absolute mass density maps of frozen hydrated cells in three dimensions.

First EIGER X 16M in operation at the Swiss Light Source

The macromolecular crystallography beamline X06SA at the Swiss Light Source, a synchrotron operated by Paul Scherrer Institute, is the first one in the world to upgrade its detector to an EIGER X 16M.

Schematic of a Weyl semimetal with spin polarized Fermi arcs on its surfaces connecting the projections of two Weyl nodes with opposite chirality.

Observation of Fermi-Arc Spin Texture in TaAs

The study of nontrivial topological semimetals (TSM) is an emerging subject, providing a new frontier in topological aspects beyond insulators. Here, we have investigated the spin texture of surface Fermi arcs in the recently discovered Weyl semimetal TaAs using spin- and angle-resolved photoemission spectroscopy. The experimental results demonstrate that the Fermi arcs are spin polarized. The measured spin texture fulfills the requirement of mirror and time-reversal symmetries and is well reproduced by our first-principles calculations, which gives strong evidence for the topologically nontrivial Weyl semimetal state in TaAs. The consistency between the experimental and calculated results further confirms the distribution of chirality of the Weyl nodes determined by first principles calculations.

Schematic of layer-specific electronic states in the bulk band gap of ultrathin magnesium oxide at the metal/oxide and the oxide/vacuum interfaces.

Excited states at interfaces of a metal-supported ultrathin oxide film

At the PEARL beamline, metal-supported ultrathin oxide films have been studied which are a class of materials of technological importance in various research fields such as catalysis, spintronics, or nanoelectronics.

X-ray nanotomography aids the production of eco-friendly solar cells

Polymer solar cells are in the spotlight for sustainable energy production of the future. Characterization of these devices by X-ray nanotomography helps to improve their production using environmentally friendly materials.

Hydrogen atoms are light and can tunnel through a barrier. Tunnelling can be quenched by substituting them with deuterium, a twice as heavy isotope of H.

Controlling tunnelling in methane loss from acetone ions by deuteration

At the imaging Photoelectron Photoion Coincidence (iPEPICO) endstation of the VUV beamline evidence of H-atom tunneling was shown.

Figure caption: Sketch of the 3D Fermi surface of d-AlNiCo (left) and its experimental cross-sections in the indicated planes (right) showing vanishing pseudogap in the quasiperiodic directions.

Fermi states and anisotropy of Brillouin zone scattering in the decagonal Al–Ni–Co quasicrystal

Quasicrystals (QCs) are intermetallic alloys where excellent long-range order coexists with lack of translational symmetry in one or more dimensions. These materials have a high potential in application as a material for a solar cells, hydrogen storage applications, heat insulating layers, and others.

MIS 4172.jpg

2015 Otto Kratky award

Marianne Liebi was awarded the 2015 Otto Kratky award by the Helmholtz-Centre Berlin for excellence in the field of small-angle X-ray scattering (SAXS) analysis. The award was bestowed in the last SAS2015 conference in Berlin. Marianne is a postdoctoral fellow in the coherent X-ray scattering group (CXS) in PSI, carrying out research in scanning SAXS measurement and analysis in 2D and 3D. Image credit ©HZB/Michael Setzpfandt

issx_logo_website.png

In Situ Serial Crystallography Workshop at the SLS

The Macromolecular Crystallography group at SLS is organizing a three days workshop on in situ serial crystallography (http://indico.psi.ch/event/issx) between November 17 and 19, 2015. It will be dedicated in the presentation of a novel method facilitating the structure determination of membrane proteins, which are highly important pharmaceutical targets but are difficult to handle using 'classical' crystallographic tools. Designed for 20 Ph.D. students, postdocs and young scientists from both academia and industry, the workshop will consist of introductory lectures, followed by hands-on practicals on in meso or lipidic cubic phase (LCP) crystallization, on in situ serial crystallography data collection using a micro-sized beam and on data processing.