NUM division - Publication Highlights

Our publication highlights of the current year.

12 October 2017

Coulomb spin liquid in anion-disordered pyrochlore Tb2Hf2O7

The charge ordered structure of ions and vacancies characterizing rare-earth pyrochlore oxides serves as a model for the study of geometrically frustrated magnetism. The organization of magnetic ions into networks of corner-sharing tetrahedra gives rise to highly correlated magnetic phases with strong fluctuations, including spin liquids and spin ices. It is an open question how these ground states governed by local rules are affected by disorder. Here we demonstrate in the pyrochlore Tb2Hf2O7, that the vicinity of the disordering transition towards a defective fluorite structure translates into a tunable density of anion Frenkel disorder while cations remain ordered. Quenched random crystal fields and disordered exchange interactions can therefore be introduced into otherwise perfect pyrochlore lattices of magnetic ions. We show that disorder can play a crucial role in preventing long-range magnetic order at low temperatures, and instead induces a strongly fluctuating Coulomb spin liquid with defect-induced frozen magnetic degrees of freedom.
Facility: SINQ, SμS, SLS

Reference: R. Sibille et al, Nature Communications 8, 892 (2017)

Read full article: here

20 September 2017

Commissioning and first performance studies of the new CMS pixel detector



In the previous months the new CMS pixel detector was brought into operation. The detector was moved from PSI to CERN and installed in February, followed by an intensive period of commissioning and calibration. This process mostly involved the adjustment of many operational parameters which influence the detector performance, e.g. the individual pixel thresholds had to be optimized for each pixel in order to achieve the best possible detector resolution – a challenging task, as there are 80 million pixels which operate at a readout speed of 40 MHz and have to cope with rates of up to 500 MHz/cm2 in the inner part of the detector. The detector consists of 4 cylindrical barrel layers located at radii between 3 cm and 16 cm around the LHC collision point. The inner most layer is equipped with a newly developed readout chip (PROC600) which has a very different readout architecture compared to the readout chip used in the other layers. As the inner layer has to deal with the highest rates it took a considerable time to understand and learn how to efficiently operate this part of the detector.

After this intense phase of commissioning and calibration the pixel detector has been included in the CMS data acquisition and first performance studies were done. The two most important performance parameters are the hit efficiency and the position resolution.

The efficiency is higher than in the previous pixel detector: It is above 99%, except for the inner layer, where high-rate related data losses limit the efficiency to 97% at the highest LHC collision rates. The achieved position resolutions are very good, too, and illustrated in the two plots: The detector can measure the position of charged particles with an accuracy of ~12 μm in the r-phi direction and ~22 μm in the z-direction.
Facility: Particle Physics

22 August 2017

Complementary Response of Static Spin-Stripe Order and Superconductivity to Nonmagnetic Impurities in Cuprates

We report muon-spin rotation and neutron-scattering experiments on nonmagnetic Zn impurity effects on the static spin-stripe order and superconductivity of the La214 cuprates. Remarkably, it was found that, for samples with hole doping x ≈ 1/8, the spin-stripe ordering temperature Tso decreases linearly with Zn doping y and disappears at y ≈ 4%, demonstrating a high sensitivity of static spin-stripe order to impurities within a CuO2 plane. Moreover, Tso is suppressed by Zn in the same manner as the superconducting transition temperature Tc for samples near optimal hole doping. This surprisingly similar sensitivity suggests that the spin-stripe order is dependent on intertwining with superconducting correlations.
Facility: SINQ, SμS

Reference: Z. Guguchia et al, Physical Review Letters 119, 087002 (2017)

Read full article: here

8 August 2017

Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet

The skyrmion lattice state (SkL), a crystal built of mesoscopic spin vortices, gains its stability via thermal fluctuations in all bulk skyrmion host materials known to date. Therefore, its existence is limited to a narrow temperature region below the paramagnetic state. This stability range can drastically increase in systems with restricted geometries, such as thin films, interfaces and nanowires. Thermal quenching can also promote the SkL as a metastable state over extended temperature ranges. Here, we demonstrate more generally that a proper choice of material parameters alone guarantees the thermodynamic stability of the SkL over the full temperature range below the paramagnetic state down to zero kelvin. We found that GaV4Se8, a polar magnet with easy-plane anisotropy, hosts a robust Néel-type SkL even in its ground state. Our supporting theory confirms that polar magnets with weak uniaxial anisotropy are ideal candidates to realize SkLs with wide stability ranges.
Reference: S. Bordács et al, Scientific Reports 7, 7584 (2017)

Read full article: here

31 July 2017

Understanding the Enhanced Magnetic Response of Aminocholesterol Doped Lanthanide-Ion-Chelating Phospholipid Bicelles

Cholesterol (Chol-OH) and its conjugates are powerful molecules for engineering the physicochemical and magnetic properties of phospholipid bilayers in bicelles. Introduction of aminocholesterol (3β-amino-5-cholestene, Chol-NH2) in bicelles composed of 1,2-dimyristoyl sn-glycero-3-phosphocholine (DMPC) and the thulium-ion-chelating phospholipid 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA/Tm3+) results in unprecedented high magnetic alignments by selectively tuning the magnetic susceptibility Δχ of the bilayer. However, little is known on the underlying mechanisms behind the magnetic response and, more generally, on the physicochemical forces governing a Chol-NH2 doped DMPC bilayer. We tackled this shortcoming with a multiscale bottom-up comparative investigation of Chol-OH and Chol-NH2 mixed with DMPC. First, simplified monolayer models on a Langmuir trough were employed to compare the two steroid molecules at various contents in DMPC. In a second step, a molecular dynamics (MD) simulation allowed for a more representative model of the bicelle bilayer while monitoring the amphiphiles and their interactions on the molecular level. In a final step, we moved away from the models and investigated the effect of temperature on the structure and magnetic alignment of Chol-NH2 doped bicelles by SANS. The DMPC/steroid monolayer studies showed that Chol-OH induces a larger condensation effect than Chol-NH2 at steroid contents of 16 and 20 mol %. However, this tendency was inversed at steroid contents of 10, 30, and 40 mol %. Although the MD simulation with 16 mol % steroid revealed that both compounds induce a liquid-ordered state in DMPC, the bilayer containing Chol-NH2 was much less ordered than the analogous system containing Chol-OH. Chol-NH2 underwent significantly more hydrogen bonding interactions with neighboring DMPC lipids than Chol-OH. It seems that, by altering the dynamics of the hydrophilic environment of the bicelle, Chol-NH2 changes the crystal field and angle of the phospholipid−lanthanide DMPE-DTPA/Tm3+ complex. These parameters largely determine the magnetic susceptibility Δχ of the complex, explaining the SANS results, which show significant differences in magnetic alignment of the steroid doped bicelles. Highly magnetically alignable DMPC/Chol-NH2/DMPE-DTPA/Tm3+ (molar ratio 16:4:5:5) bicelles were achieved up to temperatures of 35°C before a thermoreversible rearrangement into nonalignable vesicles occurred. The results confirm the potential of Chol-NH2 doped bicelles to act as building blocks for the development of the magnetically responsive soft materials of tomorrow.
Facility: SINQ

Reference: S. Isabettini et al, Langmuir 33, 8533 (2017)

Read full article: here

20 July 2017

Three-dimensional magnetization structures revealed with X-ray vector nanotomography

In soft ferromagnetic materials, the smoothly varying magnetization leads to the formation of fundamental patterns such as domains, vortices and domain walls. These have been studied extensively in thin films of thicknesses up to around 200 nanometres, in which the magnetization is accessible with current transmission imaging methods that make use of electrons or soft X-rays. In thicker samples, however, in which the magnetization structure varies throughout the thickness and is intrinsically three dimensional, determining the complex magnetic structure directly still represents a challenge. We have developed hard-X-ray vector nanotomography with which to determine the three-dimensional magnetic configuration at the nanoscale within micrometre-sized samples. We imaged the structure of the magnetization within a soft magnetic pillar of diameter 5 micrometres with a spatial resolution of 100 nanometres and, within the bulk, observed a complex magnetic configuration that consists of vortices and antivortices that form cross-tie walls and vortex walls along intersecting planes. At the intersections of these structures, magnetic singularities—Bloch points—occur. These were predicted more than fifty years ago but have so far not been directly observed. Here we image the three-dimensional magnetic structure in the vicinity of the Bloch points, which until now has been accessible only through micromagnetic simulations, and identify two possible magnetization configurations: a circulating magnetization structure and a twisted state that appears to correspond to an ‘anti-Bloch point’. Our imaging method enables the nanoscale study of topological magnetic structures in systems with sizes of the order of tens of micrometres. Knowledge of internal nanomagnetic textures is critical for understanding macroscopic magnetic properties and for designing bulk magnets for technological applications.
Facility: SLS

Reference: C. Donnelly et al, Nature 547, 328 (2017)

Read full article: here

17 July 2017

4-spin plaquette singlet state in the Shastry–Sutherland compound SrCu2(BO3)2

The study of interacting spin systems is of fundamental importance for modern condensed-matter physics. On frustrated lattices, magnetic exchange interactions cannot be simultaneously satisfied, and often give rise to competing exotic ground states. The frustrated two-dimensional Shastry–Sutherland lattice realized by SrCu2(BO3)2 is an important test to our understanding of quantum magnetism. It was constructed to have an exactly solvable 2-spin dimer singlet ground state within a certain range of exchange parameters and frustration. While the exact dimer state and the antiferromagnetic order at both ends of the phase diagram are well known, the ground state and spin correlations in the intermediate frustration range have been widely debated. We report here the first experimental identification of the conjectured plaquette singlet intermediate phase in SrCu2(BO3)2. It is observed by inelastic neutron scattering after pressure tuning at 21.5kbar. This gapped singlet state leads to a transition to an ordered Neel state above 40 kbar, which can realize a deconfined quantum critical point.
Facility: SINQ

Reference: M.E. Zayed et al, Nature Physics, adv. online publication (July 2017)

Read full article: here

14 July 2017

Three-Dimensional Electronic Structure of the Type-II Weyl Semimetal WTe2

By combining bulk sensitive soft-x-ray angular-resolved photoemission spectroscopy and first- principles calculations we explored the bulk electron states of WTe2, a candidate type-II Weyl semimetal featuring a large nonsaturating magnetoresistance. Despite the layered geometry suggesting a two-dimensional electronic structure, we directly observe a three-dimensional electronic dispersion. We report a band dispersion in the reciprocal direction perpendicular to the layers, implying that electrons can also travel coherently when crossing from one layer to the other. The measured Fermi surface is characterized by two well-separated electron and hole pockets at either side of the Γ point, differently from previous more surface sensitive angle-resolved photoemission spectroscopy experiments that additionally found a pronounced quasiparticle weight at the zone center. Moreover, we observe a significant sensitivity of the bulk electronic structure of WTe2 around the Fermi level to electronic correlations and renormalizations due to self-energy effects, previously neglected in first-principles descriptions.
Facility: SLS

Reference: D. Di Sante et al, Physical Review Letters 119, 026403 (2017)

Read full article: here

28 June 2017

Quantum Griffiths Phase Inside the Ferromagnetic Phase of Ni1-xVx

We study by means of bulk and local probes the d-metal alloy Ni1-xVx close to the quantum critical concentration, xc ≈ 11.6%, where the ferromagnetic transition temperature vanishes. The magnetization-field curve in the ferromagnetic phase takes an anomalous power-law form with a nonuniversal exponent that is strongly x dependent and mirrors the behavior in the paramagnetic phase. Muon spin rotation experiments demonstrate inhomogeneous magnetic order and indicate the presence of dynamic fluctuating magnetic clusters. These results provide strong evidence for a quantum Griffiths phase on the ferromagnetic side of the quantum phase transition.
Facility: SμS

Reference: R. Wang et al, Physical Review Letters 118, 267202 (2017)

Read full article: here

19 June 2017

Comparison of ultracold neutron sources for fundamental physics measurements



Ultracold neutrons (UCNs) are key for precision studies of fundamental parameters of the neutron and in searches for new charge-parity-violating processes or exotic interactions beyond the Standard Model of particle physics. The most prominent example is the search for a permanent electric-dipole moment of the neutron (nEDM). We have performed an experimental comparison of the leading UCN sources currently operating. We have used a “standard” UCN storage bottle with a volume of 32 liters, comparable in size to nEDM experiments, which allows us to compare the UCN density available at a given beam port.
Facility: Particle Physics

Reference: Bison, G., Daum, M., Kirch K., et al, Phys. Rev. C 95 (2017), 045503-1

Read full article: here

8 June 2017

Methods for Generating Highly Magnetically Responsive Lanthanide-Chelating Phospholipid Polymolecular Assemblies

Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and its lanthanide ion (Ln3+) chelating phospholipid conjugate, 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA), assemble into highly magnetically responsive polymolecular assemblies such as DMPC/DMPE-DTPA/Ln3+ (molar ratio 4:1:1) bicelles. Their geometry and magnetic alignability is enhanced by introducing cholesterol into the bilayer in DMPC/Cholesterol/DMPE-DTPA/Ln3+ (molar ratio 16:4:5:5). However, the reported fabrication procedures remain tedious and limit the generation of highly magnetically alignable species. Herein, a simplified procedure where freeze thawing cycles and extrusion are replaced by gentle heating and cooling cycles for the hydration of the dry lipid film was developed. Heating above the phase transition temperature Tm of the lipids composing the bilayer before cooling back below the Tm was essential to guarantee successful formation of the polymolecular assemblies composed of DMPC/DMPE-DTPA/Ln3+ (molar ratio 4:1:1). Planar polymolecular assemblies in the size range of hundreds of nanometers are achieved and deliver unprecedented gains in magnetic response. The proposed heating and cooling procedure further allowed to regenerate the highly magnetically alignable DMPC/Cholesterol/DMPE-DTPA/Ln3+ (molar ratio 16:4:5:5) species after storage for one month frozen at −18 °C. The simplicity and viability of the proposed fabrication procedure offers a new set of highly magnetically responsive lanthanide ion chelating phospholipid polymolecular assemblies as building blocks for the smart soft materials of tomorrow.
Facility: SINQ

Reference: S. Isabettini et al, Langmuir 33, 6363 (2017)

Read full article: here

5 June 2017

Coupled multiferroic domain switching in the canted conical spin spiral system Mn2GeO4

Despite remarkable progress in developing multifunctional materials, spin-driven ferro-electrics featuring both spontaneous magnetization and electric polarization are still rare. Among such ferromagnetic ferroelectrics are conical spin spiral magnets with a simultaneous reversal of magnetization and electric polarization that is still little understood. Such materials can feature various multiferroic domains that complicates their study. Here we study the multiferroic domains in ferromagnetic ferroelectric Mn2GeO4 using neutron diffraction, and show that it features a double-Q conical magnetic structure that, apart from trivial 180° commensurate magnetic domains, can be described by ferromagnetic and ferroelectric domains only. We show unconventional magnetoelectric couplings such as the magnetic-field-driven reversal of ferroelectric polarization with no change of spin-helicity, and present a phenomenological theory that successfully explains the magnetoelectric coupling. Our measurements establish Mn2GeO4 as a conceptually simple multiferroic in which the magnetic-field-driven flop of conical spin spirals leads to the simultaneous reversal of magnetization and electric polarization.
Facility: SINQ

Reference: T. Honda et al, Nature Communications 8, 15457 (2017)

Read full article: here

5 June 2017

Superlattice growth and rearrangement during evaporation-induced nanoparticle self-assembly

Understanding the assembly of nanoparticles into superlattices with well-defined morphology and structure is technologically important but challenging as it requires novel combinations of in-situ methods with suitable spatial and temporal resolution. In this study, we have followed evaporation-induced assembly during drop casting of superparamagnetic, oleate-capped γ-Fe2O3 nanospheres dispersed in toluene in real time with Grazing Incidence Small Angle X-ray Scattering (GISAXS) in combination with droplet height measurements and direct observation of the dispersion. The scattering data was evaluated with a novel method that yielded time-dependent information of the relative ratio of ordered (coherent) and disordered particles (incoherent scattering intensities), superlattice tilt angles, lattice constants, and lattice constant distributions. We find that the onset of superlattice growth in the drying drop is associated with the movement of a drying front across the surface of the droplet. We couple the rapid formation of large, highly ordered superlattices to the capillary-induced fluid flow. Further evaporation of interstitital solvent results in a slow contraction of the superlattice. The distribution of lattice parameters and tilt angles was significantly larger for superlattices prepared by fast evaporation compared to slow evaporation of the solvent.
Reference: E. Josten et al, Scientific Reports 7, 2802 (2017)

Read full article: here

18 May 2017

Pressure-induced magnetic order in FeSe: A muon spin rotation study

The magnetic order induced by the pressure was studied in FeSe by means of muon spin rotation (μSR) technique. By following the evolution of the oscillatory part of the μSR signal as a function of angle between the initial muon spin polarization and 101 axis of the studied FeSe sample, it was found that the pressure-induced magnetic order in FeSe corresponds either to the collinear (single-stripe) antiferromagnetic order as observed in parent compounds of various FeAs-based superconductors or to the bi-collinear order as obtained in the FeTe system, but with the Fe spins turned by 45° within the ab plane. The value of the magnetic moment per Fe atom was estimated to be ≅0.13–0.14 μB at p ≅ 1.9 GPa.
Facility: SμS

Reference: R. Khasanov et al, Physical Review B 95, 180504(R) (2017)

Read full article: here

15 May 2017

Emergent magnetism at transition-metal-nanocarbon interfaces

Interfaces are critical in quantum physics, and therefore we must explore the potential for designer hybrid materials that profit from promising combinatory effects. In particular, the fine-tuning of spin polarization at metallo–organic interfaces opens a realm of possibilities, from the direct applications in molecular spintronics and thin-film magnetism to biomedical imaging or quantum computing. This interaction at the surface can control the spin polarization in magnetic field sensors, generate magnetization spin-filtering effects in nonmagnetic electrodes, or even give rise to a spontaneous spin ordering in nonmagnetic elements such as diamagnetic copper and paramagnetic manganese.
Facility: SμS

Reference: F. Al Ma'Mari et al, Proceedings of the National Academy of Sciences 114, 201620216 (2017)

Read full article: here

12 May 2017

Determination of Conduction and Valence Band Electronic Structure of LaTiOxNy Thin Films

The nitrogen substitution into the oxygen sites of several oxide materials leads to a reduction of the band gap to the visible-light energy range, which makes these oxynitride semiconductors potential photocatalysts for efficient solar water splitting. Oxynitrides typically show a different crystal structure compared to the pristine oxide material. As the band gap is correlated to both the chemical composition and the crystal structure, it is not trivial to distinguish which modifications of the electronic structure induced by the nitrogen substitution are related to compositional and/or structural effects. Here, X-ray emission and absorption spectroscopy are used to investigate the electronic structures of orthorhombic perovskite LaTiOxNy thin films in comparison with films of the pristine oxide LaTiOx with similar orthorhombic structure and cationic oxidation state. Experiment and theory show the expected upward shift in energy of the valence band maximum that reduces the band gap as a consequence of the nitrogen incorporation. This study also shows that the conduction band minimum, typically considered almost unaffected by nitrogen substitution, undergoes a significant downward shift in energy. For a rational design of oxynitride photocatalysts, the observed changes of both the unoccupied and occupied electronic states have to be taken into account to justify the total band-gap narrowing induced by the nitrogen incorporation.
Keywords: solar water splitting; oxynitride thin film; pulsed laser deposition; photoelectrochemical water splitting; XES; XAS; DFT;

Facility: Thin Films and Interfaces, LMX, SYN, EPFL, ETHZ

Reference: M. Pichler et al., ChemSusChem 10, 2099 (2017)

Read full article: here

10 May 2017

Unconventional magnetic order in the conical state of MnSi

In the temperature-magnetic field phase diagram, the binary metallic compound MnSi exhibits three magnetic phases below Tc ≈ 29K.An unconventional helicoidal phase is observed in zero field. At moderate field intensity a conical phase sets in. Near Tc, in an intermediate field range, a skyrmion lattice phase appears. Here we show the magnetic structure in the conical phase to strongly depend on the field direction and to deviate substantially from a conventional conical structure.
Facility: SμS

Reference: P. Dalmas de Réotier et al, Physical Review B 95, 180403(R) (2017)

Read full article: here

5 May 2017

Anomalous Thermal Conductivity and Magnetic Torque Response in the Honeycomb Magnet α-RuCl3

We report on the unusual behavior of the in-plane thermal conductivity κ and torque τ response in the Kitaev-Heisenberg material α-RuCl3. κ shows a striking enhancement with linear growth beyond H = 7T, where magnetic order disappears, while τ for both of the in-plane symmetry directions shows an anomaly at the same field. The temperature and field dependence of κ are far more complex than conventional phonon and magnon contributions, and require us to invoke the presence of unconventional spin excitations whose properties are characteristic of a field-induced spin-liquid phase related to the enigmatic physics of the Kitaev model in an applied magnetic field.
Reference: I.A. Leahy et al, Physical Review Letters 118, 187203 (2017)

Read full article: here

28 April 2017

Bound States and Field-Polarized Haldane Modes in a Quantum Spin Ladder

The challenge of one-dimensional systems is to understand their physics beyond the level of known elementary excitations. By high-resolution neutron spectroscopy in a quantum spin-ladder material, we probe the leading multiparticle excitation by characterizing the two-magnon bound state at zero field. By applying high magnetic fields, we create and select the singlet (longitudinal) and triplet (transverse) excitations of the fully spin-polarized ladder, which have not been observed previously and are close analogs of the modes anticipated in a polarized Haldane chain. Theoretical modeling of the dynamical response demonstrates our complete quantitative understanding of these states.
Facility: SINQ

Reference: S. Ward et al, Physical Review Letters 118, 177202 (April 2017)

Read full article: here

24 April 2017

Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron

Iron-deficiency anaemia (IDA) is a major global public health problem. A sustainable and cost-effective strategy to reduce IDA is iron fortification of foods, but the most bioavailable fortificants cause adverse organoleptic changes in foods. Iron nanoparticles are a promising solution in food matrices, although their tendency to oxidize and rapidly aggregate in solution severely limits their use in fortification. Amyloid fibrils are protein aggregates initially known for their associ- ation with neurodegenerative disorders, but recently described in the context of biological functions in living organisms and emerging as unique biomaterial building blocks. Here, we show an original application for these protein fibrils as efficient carriers for iron fortification. We use biodegradable amyloid fibrils from β-lactoglobulin, an inexpensive milk protein with natural reducing effects, as anti-oxidizing nanocarriers and colloidal stabilizers for iron nanoparticles. The resulting hybrid material forms a stable protein–iron colloidal dispersion that undergoes rapid dissolution and releases iron ions during acidic and enzymatic in vitro digestion. Importantly, this hybrid shows high invivo iron bioavailability, equivalent to ferrous sulfate in haemoglobin-repletion and stable-isotope studies in rats, but with reduced organoleptic changes in foods. Feeding the rats with these hybrid materials did not result in abnormal iron accumulation in any organs, or changes in whole blood glutathione concentrations, inferring their primary safety. Therefore, these iron–amyloid fibril hybrids emerge as novel, highly effective delivery systems for iron in both solid and liquid matrices.
Facility: SINQ

Reference: Y. Shen et al, Nature Nanotechnology, adv. online publication (April 2017)

Read full article: here

12 April 2017

Doping Dependence of Collective Spin and Orbital Excitations in the Spin-1 Quantum Antiferromagnet La2-xSrxNiO4 Observed by X-Rays

We report the first empirical demonstration that resonant inelastic x-ray scattering (RIXS) is sensitive to collective magnetic excitations in S=1 systems by probing the Ni L3 edge of La2-xSrxNiO4 (x=0, 0.33, 0.45). The magnetic excitation peak is asymmetric, indicating the presence of single and multi-spin-flip excitations. As the hole doping level is increased, the zone boundary magnon energy is suppressed at a much larger rate than that in hole doped cuprates. Based on the analysis of the orbital and charge excitations observed by RIXS, we argue that this difference is related to the orbital character of the doped holes in these two families. This work establishes RIXS as a probe of fundamental magnetic interactions in nickelates opening the way towards studies of heterostructures and ultrafast pump-probe experiments.
Facility: SLS

Reference: G. Fabbris et al, Physical Review Letters 118, 156402 (April 2017)

Read full article: here

6 April 2017

Amplitude Mode in Three-Dimensional Dimerized Antiferromagnets

The amplitude ("Higgs") mode is a ubiquitous collective excitation related to spontaneous breaking of a continuous symmetry. We combine quantum Monte Carlo (QMC) simulations with stochastic analytic continuation to investigate the dynamics of the amplitude mode in a three-dimensional dimerized quantum spin system. We characterize this mode by calculating the spin and dimer spectral functions on both sides of the quantum critical point, finding that both the energies and the intrinsic widths of the excitations satisfy field-theoretical scaling predictions. While the line width of the spin response is close to that observed in neutron scattering experiments on TlCuCl3, the dimer response is significantly broader. Our results demonstrate that highly nontrivial dynamical properties are accessible by modern QMC and analytic continuation methods.
Reference: Yan Qi Qin et al, Physical Review Letters 118, 147207 (2017)

Read full article: here

6 April 2017

High hydrostatic pressure specifically affects molecular dynamics and shape of low-density lipoprotein particles

Lipid composition of human low-density lipoprotein (LDL) and its physicochemical characteristics are relevant for proper functioning of lipid transport in the blood circulation. To explore dynamical and structural features of LDL particles with either a normal or a triglyceride-rich lipid composition we combined coherent and incoherent neutron scattering methods. The investigations were carried out under high hydrostatic pressure (HHP), which is a versatile tool to study the physicochemical behavior of biomolecules in solution at a molecular level. Within both neutron techniques we applied HHP to probe the shape and degree of freedom of the possible motions (within the time windows of 15 and 100 ps) and consequently the exibility of LDL particles. We found that HHP does not change the types of motion in LDL, but in uences the portion of motions participating. Contrary to our assumption that lipoprotein particles, like membranes, are highly sensitive to pressure we determined that LDL copes surprisingly well with high pressure conditions, although the lipid composition, particularly the triglyceride content of the particles, impacts the molecular dynamics and shape arrangement of LDL under pressure.
Facility: SINQ

Reference: M. Golub et al, Scientific Reports 7, 46034 (2017)

Read full article: here

3 April 2017

LaTiOxNy thin film model systems for photocatalytic water splitting: physicochemical evolution of the solid-liquid interface and the role of the crystallographic orientation

The size of the band gap and the energy position of the band edges make several oxynitride semiconductors promising candidates for efficient hydrogen and oxygen production under solar light illumination. The intense research efforts dedicated to oxynitride materials have unveiled the majority of their most important properties. However, two crucial aspects have received much less attention. One is the critical issue of the compositional/structural surface modifications occurring during operation and how these affect the photoelectrochemical performance. The second concerns the relation between the electrochemical response and the crystallographic surface orientation of the oxynitride semiconductor. These are indeed topics of fundamental importance since it is exactly at the surface where the visible light-driven electrochemical reaction takes place.
In contrast to conventional powder samples, thin films represent the best model system for these investigations. This study reviews current state-of-the-art of oxynitride thin film fabrication and characterization before focusing on LaTiO2N selected as representative photocatalyst. We report the investigation of the initial physicochemical evolution of the surface. Then we show that, after stabilization, the absorbed photon-to-current conversion efficiency of epitaxial thin films can differ by about 50% for different crystallographic surface orientations and be up to 5 times larger than for polycrystalline samples.
Keywords: solar water splitting; oxynitride thin film; pulsed laser deposition; photoelectrochemical water splitting;;

Facility: Thin Films and Interfaces, LMX, LMU, ENE, Univ. Bern, Kyushu University

Reference: M. Pichler et al., Adv. Funct. Mater., 1605690 (2017)

Read full article: here

29 March 2017

Gapless Spin-Liquid Ground State in the S=1/2 Kagome Antiferromagnet

The defining problem in frustrated quantum magnetism, the ground state of the nearest-neighbor S=1/2 antiferromagnetic Heisenberg model on the kagome lattice, has defied all theoretical and numerical methods employed to date. We apply the formalism of tensor-network states, specifically the method of projected entangled simplex states, which combines infinite system size with a correct accounting for multipartite entanglement. By studying the ground-state energy, the finite magnetic order appearing at finite tensor bond dimensions, and the effects of a next-nearest-neighbor coupling, we demonstrate that the ground state is a gapless spin liquid. We discuss the comparison with other numerical studies and the physical interpretation of this result.
Reference: H.J. Liao et al, Physical Review Letters 118, 137202 (2017) (Selected for a Viewpoint in Physics)

Read full article: here

20 March 2017

Tuning the multiferroic mechanisms of TbMnO3 by epitaxial strain

A current challenge in the field of magnetoelectric multiferroics is to identify systems that allow a controlled tuning of states displaying distinct magnetoelectric responses. Here we show that the multiferroic ground state of the archetypal multiferroic TbMnO3 is dramatically modified by epitaxial strain. Neutron diffraction reveals that in highly strained films the magnetic order changes from the bulk-like incommensurate bc-cycloidal structure to commensurate magnetic order. Concomitant with the modification of the magnetic ground state, optical second-harmonic generation (SHG) and electric measurements show an enormous increase of the ferroelectric polarization, and a change in its direction from along the c- to the a-axis. Our results suggest that the drastic change of multiferroic properties results from a switch of the spin-current magnetoelectric coupling in bulk TbMnO3 to symmetric magnetostriction in epitaxially-strained TbMnO3. These findings experimentally demonstrate that epitaxial strain can be used to control single-phase spin-driven multiferroic states.
Keywords: multiferroics; thin films; strain; PLD; magnetic ordering; second harmonic generation;

Facility: SINQ

Reference: K. Shimamoto et al, Scientific Reports 7, 44753 (2017)

Read full article: here

17 March 2017

Sub-pixel correlation length neutron imaging: Spatially resolved scattering information of microstructures on a macroscopic scale

Neutron imaging and scattering give data of significantly different nature and traditional methods leave a gap of accessible structure sizes at around 10 micrometers. Only in recent years overlap in the probed size ranges could be achieved by independent application of high resolution scattering and imaging methods, however without providing full structural information when microstructures vary on a macroscopic scale. In this study we show how quantitative neutron dark-field imaging with a novel experimental approach provides both sub-pixel resolution with respect to microscopic correlation lengths and imaging of macroscopic variations of the microstructure. Thus it provides combined information on multiple length scales. A dispersion of micrometer sized polystyrene colloids was chosen as a model system to study gravity induced crystallisation of microspheres on a macro scale, including the identification of ordered as well as unordered phases. Our results pave the way to study heterogeneous systems locally in a previously impossible manner.
Facility: SINQ

Reference: R.P. Harti et al, Scientific Reports 7, 44588 (2017)

Read full article: here

16 March 2017

High-resolution non-destructive three-dimensional imaging of integrated circuits

Modern nanoelectronics has advanced to a point at which it is impossible to image entire devices and their interconnections non- destructively because of their small feature sizes and the complex three-dimensional structures resulting from their integration on a chip. This metrology gap implies a lack of direct feedback between design and manufacturing processes, and hampers quality control during production, shipment and use. Here we demonstrate that X-ray ptychography - a high-resolution coherent diffractive imaging technique - can create three-dimensional images of integrated circuits of known and unknown designs with a lateral resolution in all directions down to 14.6 nanometres. We obtained detailed device geometries and corresponding elemental maps, and show how the devices are integrated with each other to form the chip. Our experiments represent a major advance in chip inspection and reverse engineering over the traditional destructive electron microscopy and ion milling techniques. Foreseeable developments in X-ray sources, optics and detectors, as well as adoption of an instrument geometry optimized for planar rather than cylindrical samples, could lead to a thousand-fold increase in efficiency, with concomitant reductions in scan times and voxel sizes.
Facility: SLS

Reference: M. Holler et al, Nature 543, 402 (2017)

Read full article: here

15 March 2017

Ground state selection under pressure in the quantum pyrochlore magnet Yb2Ti2O7

A quantum spin liquid is a state of matter characterized by quantum entanglement and the absence of any broken symmetry. In condensed matter, the frustrated rare-earth pyrochlore magnets Ho2Ti2O7 and Dy2Ti2O7, so-called spin ices, exhibit a classical spin liquid state with fractionalized thermal excitations (magnetic monopoles). Evidence for a quantum spin ice, in which the magnetic monopoles become long range entangled and an emergent quantum electrodynamics arises, seems within reach. The magnetic properties of the quantum spin ice candidate Yb2Ti2O7 have eluded a global understanding and even the presence or absence of static magnetic order at low temperatures is controversial. Here we show that sensitivity to pressure is the missing key to the low temperature behaviour of Yb2Ti2O7. By combining neutron diffraction and muon spin relaxation on a stoichiometric sample under pressure, we evidence a magnetic transition from a disordered, non-magnetic, ground state to a splayed ferromagnetic ground state.
Facility: SμS

Reference: E. Kermarrec et al, Nature Communications 8, 14810 (2017)

Read full article: here

10 March 2017

Effects of Quantum Spin-1/2 Impurities on the Magnetic Properties of Zigzag Spin Chains

We investigate the effect of Co2+ (spin-1/2) impurities on the magnetic ground state and low-lying spin excitations of the quasione-dimensional spin-1/2 antiferromagnet SrCuO2 by means of neutron scattering, muon spin spectroscopy, and bulk (ac and dc) magnetic susceptibilities. We found that dilute Co doping induces an Ising-like anisotropy and enhances the magnetic ordering temperature rather significantly, but preserves the gapless nature of the spin excitations. These results are in apparent contradiction with the recent studies of Ni (spin-1) doped SrCuO2. Low-temperature magnetic behavior of the Co-doped zigzag chains in SrCuO2 reveals the presence of a weak geometrical spin frustration.
Facility: SINQ

Reference: K. Karmakar et al, Physical Review Letters 118, 107201 (2017)

Read full article: here

10 March 2017

Distinct Evolutions of Weyl Fermion Quasiparticles and Fermi Arcs with Bulk Band Topology in Weyl Semimetals

The Weyl semimetal phase is a recently discovered topological quantum state of matter characterized by the presence of topologically protected degeneracies near the Fermi level. These degeneracies are the source of exotic phenomena, including the realization of chiral Weyl fermions as quasiparticles in the bulk and the formation of Fermi arc states on the surfaces. Here, we demonstrate that these two key signatures show distinct evolutions with the bulk band topology by performing angle-resolved photoemission spectroscopy, supported by first-principles calculations, on transition-metal monophosphides. While Weyl fermion quasiparticles exist only when the chemical potential is located between two saddle points of the Weyl cone features, the Fermi arc states extend in a larger energy scale and are robust across the bulk Lifshitz transitions associated with the recombination of two nontrivial Fermi surfaces enclosing one Weyl point into a single trivial Fermi surface enclosing two Weyl points of opposite chirality. Therefore, in some systems (e.g., NbP), topological Fermi arc states are preserved even if Weyl fermion quasiparticles are absent in the bulk. Our findings not only provide insight into the relationship between the exotic physical phenomena and the intrinsic bulk band topology in Weyl semimetals, but also resolve the apparent puzzle of the different magnetotransport properties observed in TaAs, TaP, and NbP, where the Fermi arc states are similar.
Facility: SLS

Reference: N. Xu et al, Physical Review Letters 118, 106406 (2017)

Read full article: here

9 March 2017

Room-temperature helimagnetism in FeGe thin films

Chiral magnets are promising materials for the realisation of high-density and low-power spintronic memory devices. For these future applications, a key requirement is the synthesis of appropriate materials in the form of thin films ordering well above room temperature. Driven by the Dzyaloshinskii-Moriya interaction, the cubic compound FeGe exhibits helimagnetism with a relatively high transition temperature of 278 K in bulk crystals. We demonstrate that this temperature can be enhanced significantly in thin films. Using x-ray scattering and ferromagnetic resonance techniques, we provide unambiguous experimental evidence for long-wavelength helimagnetic order at room temperature and magnetic properties similar to the bulk material. We obtain αintr = 0.0036±0.0003 at 310K for the intrinsic damping parameter. We probe the dynamics of the system by means of muon-spin rotation, indicating that the ground state is reached via a freezing out of slow dynamics. Our work paves the way towards the fabrication of thin films of chiral magnets that host certain spin whirls, so-called skyrmions, at room temperature and potentially offer integrability into modern electronics.
Facility: SμS

Reference: S.L. Zhang et al, Scientific Reports 7, 123 (2017)

Read full article: here

1 March 2017

Silicon pixel barrel detector successfully installed in the CMS experiment

Middle of February the upgraded CMS silicon pixel barrel detector has been moved from PSI to CERN and was successfully installed in the CMS experiment. The new pixel detector is part of the so-called phase1-upgrade of the CMS detector, located at a distance of only a few centimetres away from the interaction point and able to cope with the harsh particle environment expected due to the increased luminosity of the LHC collider.
The installation of the upgraded pixel detector so far crowns the work of approximately 15 year of a collaborative R&D effort led by the High Energy Group of the Laboratory for Particle Physics. After the installation of the previous pixel detector in 2008 the work concentrated on the design of a series of radiation tolerant pixel readout chips with low pixel thresholds, low noise behaviour and high pixel hit rate capabilities of up to 600 MHz/cm2 and the development and construction of a very light, low material budget detector mechanics.
The performance of the chips and related readout electronics was regularly tested at the πE1 beamline which offers with its high momentum and high rate pion beam similar conditions as the hadronic particle environment close to the interaction point of the CMS experiment. The silicon pixel technology developed at PSI for the first CMS silicon vertex detector was successfully transferred to industry and led in 2007 to the foundation of the spin-off company DECTRIS which fabricates and sells x-ray counting pixel detectors all over the world.
Facility: Particle Physics

28 February 2017

Spiral spin-liquid and the emergence of a vortex-like state in MnSc2S4

Spirals and helices are common motifs of long-range order in magnetic solids, and they may also be organized into more complex emergent structures such as magnetic skyrmions and vortices. A new type of spiral state, the spiral spin-liquid, in which spins fluctuate collectively as spirals, has recently been predicted to exist. Here, using neutron scattering techniques, we experimentally prove the existence of a spiral spin-liquid in MnSc2S4 by directly observing the 'spiral surface'-a continuous surface of spiral propagation vectors in reciprocal space. We elucidate the multi-step ordering behaviour of the spiral spin- liquid, and discover a vortex-like triple-q phase on application of a magnetic field. Our results prove the e ectiveness of the J1-J2 Hamiltonian on the diamond lattice as a model for the spiral spin-liquid state in MnSc2S4, and also demonstrate a new way to realize a magnetic vortex lattice through frustrated interactions.
Facility: SINQ

Reference: S. Gao et al, Nature Physics 13, 157 (2017)

Read full article: here

21 February 2017

Intermicellar Interactions and the Viscoelasticity of Surfactant Solutions: Complementary Use of SANS and SAXS

In ionic surfactant micelles, basic interactions among distinct parts of surfactant monomers, their counterion, and additives are fundamental to tuning molecular self-assembly and enhancing viscoelasticity. Here, we investigate the addition of sodium salicylate (NaSal) to hexadecyltrimethylammonium chloride and bromide (CTAC and CTAB) and 1-hexadecylpyridinium chloride and bromide (CPyCl and CPyBr), which have distinct counterions and headgroup structures but the same hydrophobic tail. Different contrasts are obtained from small-angle neutron scattering (SANS), which probes differences between the nucleus of atoms, and X-rays SAXS, which probes differences in electron density. If combined, this contrast allows us to define specific intramicellar length scales and intermicellar interactions. SANS signals are sensitive to the contrast between the solvent (D2O) and the hydrocarbonic tails in the micellar core (hydrogen), and SAXS can access the inner structure of the polar shell because the headgroups, counterions, and penetrated salt have higher electron densities compared to the solvent and to the micellar core. The number density, intermicellar distances, aggregation number, and inter/intramicellar repulsions are discussed on the basis of the dependence of the structure factor and form factor on the micellar aggregate morphology. Therefore, we confirm that micellar growth can be tuned by variations in the flexibility and size of the the headgroup as well as the ionic dissociation rate of its counterion. Additionally, we show that the counterion binding is even more significant to the development of viscoelasticity than the headgroup structure of a surfactant molecule. This is a surprising finding, showing the importance of electrostatic charges in the self-assembly process of ionic surfactant molecules.
Facility: SINQ, SLS

Reference: V. Lutz-Bueno et al, Langmuir 33, 2617 (2017)

Read full article: here

16 February 2017

New magnetic phase in the nickelate perovskite TlNiO3

The RNiO3 perovskites are known to order antiferromagnetically below a material-dependent Néel temperature TN. We report experimental evidence indicating the existence of a second magnetically ordered phase in TlNiO3 above TN = 104K, obtained using nuclear magnetic resonance and muon spin rotation spectroscopy. The new phase, which persists up to a temperature TN* = 202K, is suppressed by the application of an external magnetic field of approximately 1T. It is not yet known if such a phase also exists in other perovskite nickelates.
Facility: SμS

Reference: L. Korosec et al, Physical Review B 95, 060411(R) (2017) (editor's suggestion)

Read full article: here

10 February 2017

Magnetic Field Dependence of Excitations Near Spin-Orbital Quantum Criticality

The spinel FeSc2S4 has been proposed to realize a near-critical spin-orbital singlet (SOS) state, where entangled spin and orbital moments fluctuate in a global singlet state on the verge of spin and orbital order. Here we report powder inelastic neutron scattering measurements that observe the full bandwidth of magnetic excitations and we find that spin-orbital triplon excitations of an SOS state can capture well key aspects of the spectrum in both zero and applied magnetic fields up to 8.5 T. The observed shift of low-energy spectral weight to higher energies upon increasing applied field is naturally explained by the entangled spin-orbital character of the magnetic states, a behavior that is in strong contrast to spin-only singlet ground state systems, where the spin gap decreases upon increasing applied field.
Facility: SINQ

Reference: A. Biffin et al, Physical Review Letters 118, 067205 (2017)

Read full article: here

1 February 2017

Probing current-induced magnetic fields in Au|YIG heterostructures with low-energy muon spin spectroscopy

We investigated the depth dependence of current-induced magnetic fields in a bilayer of a normal metal (Au) and a ferrimagnetic insulator (Yttrium Iron Garnet—YIG) by using low energy muon spin spectroscopy (LE-μSR). This allows us to explore how these fields vary from the Au surface down to the buried Au|YIG interface, which is relevant to study physics like the spin-Hall effect. We observed a maximum shift of 0.4 G in the internal field of muons at the surface of Au film which is in close agreement with the value expected for Oersted fields. As muons are implanted closer to the Au|YIG interface, the shift is strongly suppressed, which we attribute to the dipolar fields present at the Au|YIG interface. Combining our measurements with modeling, we show that dipolar fields caused by the finite roughness of the Au|YIG interface consistently explain our observations. Our results, therefore, gauge the limits on the spa|ial resolution and the sensitivity of LE-μSR to the roughness of the buried magnetic interfaces, a prerequisite for future studies addressing current induced fields caused by the spin-accumulations due to the spin-Hall effect.
Facility: SμS

Reference: A. Aqeel et al, Applied Physics Letters 110, 062409 (2017)

Read full article: here

20 January 2017

Full Elasticity Tensor from Thermal Diffuse Scattering

We present a method for the precise determination of the full elasticity tensor from a single crystal diffraction experiment using monochromatic X-rays. For the two benchmark systems calcite and magnesium oxide, we show that the measurement of thermal diffuse scattering in the proximity of Bragg reflections provides accurate values of the complete set of elastic constants. This approach allows for a reliable and model-free determination of the elastic properties and can be performed together with crystal structure investigation in the same experiment.
Reference: B. Wehinger et al, Physical Review Letters 118, 035502 (2017)

Read full article: here

18 January 2017

Suppression of magnetic excitations near the surface of the topological Kondo insulator SmB6

We present a detailed investigation of the temperature and depth dependence of the magnetic properties of the three-dimensional topological Kondo insulator SmB6, in particular, near its surface. We find that local magnetic field fluctuations detected in the bulk are suppressed rapidly with decreasing depths, disappearing almost completely at the surface. We attribute the magnetic excitations to spin excitons in bulk SmB6, which produce local magnetic fields of about ∼1.8 mT fluctuating on a time scale of ∼60 ns. We find that the excitonic fluctuations are suppressed when approaching the surface on a length scale of ∼40-90 nm, accompanied by a small enhancement in static magnetic fields. We associate this length scale to the size of the excitonic state.
Facility: SμS

Reference: P.K. Biswas et al, Physical Review B (Rapid Communications) 95, 020410(R) (2017)

Read full article: here

12 January 2017

Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle−Protein Systems

The pH-dependent structure and interaction of anionic silica nanoparticles (diameter 18 nm) with two globular model proteins, lysozyme and bovine serum albumin (BSA), have been studied. Cationic lysozyme adsorbs strongly on the nanoparticles, and the adsorption follows exponential growth as a function of lysozyme concentration, where the saturation value increases as pH approaches the isoelectric point (IEP) of lysozyme. By contrast, irrespective of pH, anionic BSA does not show any adsorption. Despite having a different nature of interactions, both proteins render a similar phase behavior where nanoparticle−protein systems transform from being one-phase (clear) to two-phase (turbid) above a critical protein concentration (CPC). The measurements have been carried out for a fixed concentration of silica nanoparticles (1 wt %) with varying protein concentrations (0-5 wt %)...
Facility: SINQ

Reference: I. Yadav et al, Langmuir 33, 1227 (2017)

Read full article: here