Scientific Highlights


20 July 2018

Collective magnetism in an artificial 2D XY spin system

Two-dimensional magnetic systems with continuous spin degrees of freedom exhibit a rich spectrum of thermal behaviour due to the strong competition between fluctuations and correlations. When such systems incorporate coupling via the anisotropic dipolar interaction, a discrete symmetry emerges, which can be spontaneously broken leading to a low-temperature ordered phase. However, the experimental realisation of such two-dimensional spin systems in crystalline materials is difficult since the dipolar coupling is usually much weaker than the exchange interaction. Here we realise two-dimensional magnetostatically coupled XY spin systems with nanoscale thermally active magnetic discs placed on square lattices. Using low-energy muon-spin relaxation and soft X-ray scattering, we observe correlated dynamics at the critical temperature and the emergence of static long-range order at low temperatures, which is compatible with theoretical predictions for dipolar-coupled XY spin systems. Furthermore, by modifying the sample design, we demonstrate the possibility to tune the collective magnetic behaviour in thermally active artificial spin systems with continuous degrees of freedom.
Facility: SμS, SLS

Reference: N. Leo et al, Nature Communications 9, 2850 (2018)

Read full article: here

26 June 2018

Isotope effect on the spin dynamics of single-molecule magnets probed by muon spin spectroscopy

Muon spin relaxation (μSR) experiments on a single molecule magnet enriched in different Dy isotopes detect unambiguously a slowing down of the zero field spin dynamics for the non-magnetic isotope. This occurs in the low temperature regime dominated by quantum tunnelling, in agreement with previous ac susceptibility investigations. In contrast to the latter, however, μSR is sensitive to all fluctuation modes affecting the lifetime of the spin levels.
Facility: SμS

Reference: L. Tesi et al, Chemical Communications 54, 7826 (2018)

Read full article: here

14 June 2018

Observation of Anomalous Meissner Screening in Cu/Nb and Cu/Nb/Co Thin Films

We have observed the spatial distribution of magnetic flux in Nb, Cu/Nb, and Cu/Nb/Co thin films using muon-spin rotation. In an isolated 50-nm-thick Nb film, we find a weak flux expulsion (Meissner effect) which becomes significantly enhanced when adding an adjacent 40 nm layer of Cu. The added Cu layer exhibits a Meissner effect (due to induced superconducting pairs) and is at least as effective as the Nb to expel flux. These results are confirmed by theoretical calculations using the quasiclassical Green’s function formalism. An unexpected further significant enhancement of the flux expulsion is observed when adding a thin (2.4 nm) ferromagnetic Co layer to the bottom side of the Nb. This observed cooperation between superconductivity and ferromagnetism, by an unknown mechanism, forms a key ingredient for developing superconducting spintronics.
Facility: SμS

Reference: M.G. Flokstra et al, Physical Review Letters 120, 247001 (2018), Editors' suggestion

Read full article: here

8 June 2018

Breakdown of Magnetic Order in the Pressurized Kitaev Iridate β-Li2IrO3

Temperature-pressure phase diagram of the Kitaev hyperhoneycomb iridate β-Li2IrO3 is explored using magnetization, thermal expansion, magnetostriction, and muon spin rotation measurements, as well as single-crystal x-ray diffraction under pressure and ab initio calculations. The Néel temperature of β-Li2IrO3 increases with the slope of 0.9 K/GPa upon initial compression, but the reduction in the polarization field Hc reflects a growing instability of the incommensurate order. At 1.4 GPa, the ordered state breaks down upon a first-order transition, giving way to a new ground state marked by the coexistence of dynamically correlated and frozen spins. This partial freezing in the absence of any conspicuous structural defects may indicate the classical nature of the resulting pressure-induced spin liquid, an observation paralleled to the increase in the nearest-neighbor off-diagonal exchange Γ under pressure.
Facility: SμS

Reference: M. Majumder et al, Physical Review Letters 120, 237202 (2018)

Read full article: here

14 March 2018

Spin-liquid-like state in a spin-1/2 square-lattice antiferromagnet perovskite induced by d10 – d0 cation mixing

A quantum spin liquid state has long been predicted to arise in spin-1/2 Heisenberg square-lattice antiferromagnets at the boundary region between Néel (nearest-neighbor interaction dominates) and columnar (next-nearest-neighbor interaction dominates) antiferromagnetic order. However, there are no known compounds in this region. Here we use d10 – d0 cation mixing to tune the magnetic interactions on the square lattice while simultaneously introducing disorder. We find spin-liquid-like behavior in the double perovskite Sr2Cu(Te0.5W0.5)O6, where the isostructural end phases Sr2CuTeO6 and Sr2CuWO6 are Néel and columnar type antiferromagnets, respectively. We show that magnetism in Sr2Cu(Te0.5W0.5)O6 is entirely dynamic down to 19 mK. Additionally, we observe at low temperatures for Sr2Cu(Te0.5W0.5)O6 - similar to several spin liquid candidates—a plateau in muon spin relaxation rate and a strong T-linear dependence in specific heat. Our observations for Sr2Cu(Te0.5W0.5)O6 highlight the role of disorder in addition to magnetic frustration in spin liquid physics.
Facility: SμS

Reference: O. Mustonen et al, Nature Communications 9, 1085 (2018)

Read full article: here

20 February 2018

Quasistatic antiferromagnetism in the quantum wells of SmTiO3/SrTiO3 heterostructures

High carrier density quantum wells embedded within a Mott insulating matrix present a rich arena for exploring unconventional electronic phase behavior ranging from non-Fermi-liquid transport and signatures of quantum criticality to pseudogap formation. Probing the proposed connection between unconventional magnetotransport and incipient electronic order within these quantum wells has however remained an enduring challenge due to the ultra-thin layer thicknesses required. Here we address this challenge by exploring the magnetic properties of high-density SrTiO3 quantum wells embedded within the antiferromagnetic Mott insulator SmTiO3 via muon spin relaxation and polarized neutron reflectometry measurements. The one electron per planar unit cell acquired by the nominal d0 band insulator SrTiO3 when embedded within a d1 Mott SmTiO3 matrix exhibits slow magnetic fluctuations that begin to freeze into a quasistatic spin state below a critical temperature T*. The appearance of this quasistatic well magnetism coincides with the previously reported opening of a pseudogap in the tunneling spectra of high carrier density wells inside this film architecture. Our data suggest a common origin of the pseudogap phase behavior in this quantum critical oxide heterostructure with those observed in bulk Mott materials close to an antiferromagnetic instability.
Facility: SμS

Reference: R.F. Need et al, npj Quantum Materials 3, 7 (2018)

Read full article: here