Show filters
Expérience dans une goutte en lévitation
La structure exacte des protéines est normalement déterminée au PSI par la technique de diffraction des rayons X. Deux scientifiques du PSI viennent de l’améliorer de façon astucieuse: au lieu d’immobiliser les protéines, ils les ont étudiées dans une goutte de liquide en lévitation.
Cervin miniature
Des chercheurs de l’Institut Paul Scherrer ont produit un grand nombre de maquettes détaillées du Cervin. Chacune d’elles mesure moins d’un dixième de millimètre. Ils démontrent ainsi comment fabriquer en série des objets 3D aussi délicats. Les matériaux qui portent à leur surface de minuscules structures 3D de ce genre présentent souvent des propriétés susceptibles de réduire l’usure de composants mécaniques, par exemple.
De minuscules aimants imitent la vapeur, l’eau et la glace
Des chercheurs de l’Institut Paul Scherrer (PSI) ont créé un matériau artificiel à partir d’un milliard de minuscules aimants. Fait étonnant : il s’avère à présent que les propriétés magnétiques de ce métamatériau changent avec la température de sorte qu’il peut prendre des états différents, semblable à l’eau qui a un état gazeux, un état liquide et un état solide.
Sept nanomètres pour l’électronique du futur
Des chercheurs de l’Institut Paul Scherrer ont réussi à produire dans un matériau semi-conducteur un schéma régulier, 16 fois plus petit que dans les puces informatiques actuelles. Ils ont ainsi fait un grand pas vers des composants informatiques encore plus petits. L’industrie considère que des structures de cette taille seront la norme en 2028.
Fractionner une impulsion de rayons X pour visualiser des processus ultra rapides
Le laser à rayons X SwissFEL du PSI permettra de visualiser les différentes étapes de processus très rapides. Un nouveau procédé devrait rendre possibles des expériences encore plus précises : il consiste à fractionner chaque impulsion de rayons X, et à faire en sorte que chaque fraction de l’impulsion atteigne l’une après l’autre l’objet étudié. Le principe de ce processus rappelle celui de l’ancienne chronophotographie.
La 3D, au nanomètre près
Des chercheurs de l'Institut Paul Scherrer et de l'ETH Zurich ont créé des images en 3D de minuscules objets, et ont même réussi à visualiser au niveau de ces derniers des détails de 25 nanomètres (1 nanomètre = 1 million de millimètre). En plus de déterminer la forme de leurs objets d'étude, ils ont pu également mettre en évidence la façon dont un élément chimique donné (le cobalt) était réparti au sein de ces derniers, tout en étant capables d'établir si ce même élément était présent sous forme de liaison chimique ou sous forme pure.