Aller au contenu principal
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Rechercher
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOuvrir ce point de menu principal
    • Research Initiatives
    • Ethics and Research integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOuvrir ce point de menu principal
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Scientific Computing, Theory and Data
    • Large Research Facilities
  • Facilities and InstrumentsOuvrir ce point de menu principal
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOuvrir ce point de menu principal
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • New ProjectsOuvrir ce point de menu principal
    • SLS 2.0
    • IMPACT
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

Vous êtes ici:

  1. PSI Home
  2. Labs & User Services
  3. PSD
  4. LXN
  5. Research Groups
  6. X-ray Nano-Optics
  7. X-ray Optics for Imaging and Spectroscopy
  8. Blazed X-ray Optics

Navigation secondaire

Laboratory for X-ray Nanoscience and Technologies (LXN)

  • About LXN
    • Organisational Structure
  • Open Positions
  • People
  • Research Groups Sous-menu élargi
    • X-ray Nano-Optics Sous-menu élargi
      • X-ray Optics for Imaging and Spectroscopy Sous-menu élargi
        • Fresnel Zone Plate for X-ray Microscopy
        • Blazed X-ray Optics
        • Zernike X-ray Phase Contrast Microscopy
        • Fresnel Zone Plates for RIXS
        • Refractive Lenses by 2 Photon 3D Lithography
      • Wavefront Metrology and Manipulation
        • Vortex Fresnel Zone Plates
        • Grating-based Wavefront Metrology
      • X-ray Optics for XFELs
        • Diamond Fresnel Zone Plates
        • Beam Splitter Gratings for Spectral Monitoring
        • A Delay Line for Ultrafast Pump-Probe Experiments
        • X-ray Streaking for Ultrafast Processes
    • Molecular Nanoscience
      • On-surface Chemistry
      • Scanning Probe Transport
      • Spins in Molecular Monolayers
      • SiC: Surfaces and Interfaces
      • Our Research Team
    • Advanced Lithography and Metrology
      • EUV Interference Lithography
      • EUV Lensless Imaging
      • ALM Nanoscience
    • Quantum Photon Science
      • News and highlights
      • People
      • Open positions
      • Current projects
        • Imaging quantum many-body states
        • Nonlinear magnonics
        • Optical devices & methods
        • Rare-earth quantum magnets
        • Rydberg states in Si ∂-layers
        • Strained Ge laser (former research activity of H. Sigg & collaborators)
        • Van der Waals materials & devices
      • Infrastructure
        • Cristallina-Q
        • IR beamline
        • Nano-fabrication
      • Publications
      • QTC@PSI
    • Detectors
      • Projects
        • MYTHEN
        • GOTTHARD
        • EIGER
        • JUNGFRAU
        • MOENCH
        • AGIPD
        • Documentation
        • Software Releases
      • Research
      • Detectors Scientific Highlights
      • Publications
      • Team
  • Facilities and Equipment
    • Surface Science Lab
    • Scanning Electron Microscopy
    • Scanning Probe Microscopy
    • PEARL Beamline
    • XIL Facility at the SLS
    • Cleanroom Labs
  • Scientific Highlights and News
    • Archive
  • Publications
    • Archive

Info message

Ce contenu n'est pas disponible en français.

Blazed X-ray Optics

The theoretical efficiency limits of different types of zone plate structures.
The theoretical efficiency limits of different types of zone plate structures.

The diffractive optics developed and fabricated at the LMN enable ultra-high resolution for X-ray microscopy applications. However, the efficiency of conventional (binary) Fresnel zone plates is limited. Therefore the development and application of so called blazed diffractive X-ray optics is one of the research topics of the X-ray optics group.  These special optics are designed to induce a continuous or a multi-level phase change, thus overcoming the fundamental limitations of conventional designs. Two main approaches under development are a tilted geometry of two specially designed 1D-lenses and the stacking of two Fresnel zone plates on top of each other.

Tilted X-ray Optics

Schematics of the lens specially designed for blazed profile in tilted geometry. Left: a single lenslet. Right: the principle of a full lens.
Schematics of the lens specially designed for blazed profile in tilted geometry. Left: a single lenslet. Right: the principle of a full lens.

One implementation of blazed X-ray optics is a nano-focusing module based on two linear Fresnel zone plates in tilted geometry. Adjustment of the tilt angle enables tuning of the setup for optimal efficiency over a wide range of photon energies. The zone plates are specially designed to generate a blazed phase profile in tilted geometry, thus overcoming the efficiency limitations of binary diffractive structures. The tilted arrangement has the important advantage, that the acceptance of the lenses is not limited to the height of the individual lenslets. We achieved diffraction efficiencies of >50% for two Nickel lenses in series (>70% for a single lens) at 8 keV photon energy. The lenses have an acceptance of 400 µm × 440 µm and provide spot sizes of ~100 nm FWHM [1].

The schematic view of a focusing setup based on two optimized linear lenses.
The schematic view of a focusing setup based on two optimized linear lenses.
Scanning electron microscope images of nickel lens structures designed for blazed operation in tilted geometry.
Scanning electron microscope images of nickel lens structures designed for blazed operation in tilted geometry.
Scanning electron microscope images of gold lens structures designed for blazed operation in tilted geometry.
Scanning electron microscope images of gold lens structures designed for blazed operation in tilted geometry.
Scanning electron microscope images of diamond lens structures designed for blazed operation in tilted geometry.
Scanning electron microscope images of diamond lens structures designed for blazed operation in tilted geometry.

Publications

  1. P. Karvinen, C. Borca, M. Willimann, B. Meyer, M. Birri, D. Grolimund, J. Patommel, G. Wellenreuther, G. Falkenberg, M. Guizar-Sicairos, A. Menzel and C. David, Kinoform diffractive lenses for efficient nano-focusing of hard X-rays Optics Express 22 (2014) p. 16676
  2. Lebugle, M., Dworkowski, F., Pauluhn, A., Guzenko, V. A., Romano, L., Meier, N., … David, C. (2018). High-intensity x-ray microbeam for macromolecular crystallography using silicon kinoform diffractive lenses. Applied Optics, 57(30), 9032-9039.

Stacked Fresnel Zone Plates

Principle of stacking two Fresnel zone plates to form an effectively blazed staircase profile.
Principle of stacking two Fresnel zone plates to form an effectively blazed staircase profile.

The second approach discussed is stacking two FZPs. Previously stacking of two identical FZPs has been used to double the height of the structures and thus the induced phase shift. Our approach is to design the individual FZPs to form a multilevel phase profile when stacked, effectively approximating the optimal continuous blazed profile.


A three level nickel zone plate with 200 μm diameter and effective 200 nm smallest zone width.
A three level nickel zone plate with 200 μm diameter and effective 200 nm smallest zone width.

In a collaboration funded by the Nanoscopium beam line of Synchrotron SOLEIL, we have developed schemes for the blazed stacking of zone plates with 3, 4, and 6 height levels by aligned electron-beam exposures and electroplating of Nickel. The measured efficiencies reached 54% at 6.5 keV photon energy [1,2].



 

Publications

  1. I. Mohacsi, P. Karvinen, I. Vartiainen, V.A. Guzenko, A. Somogyi, C. Kewish, P. Mercere, and C. David, High efficiency X-ray nanofocusing by multilevel zone plates Journal of Synchrotron Radiation 21 (2014) p. 497
  2. I. Mohacsi, I. Vartiainen, M. Guizar-Sicairos, P. Karvinen, V.A. Guzenko, E. Müller, C.M. Kewish, A. Somogyi and C. David Fabrication and characterization of high efficiency double-sided blazed X-ray optics Optics Letters 41 (2016) p. 281

Sidebar

Contact

Dr. Christian David

Laboratory for X-ray Nano-Optics
Paul Scherrer Institut
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 37 53
E-mail: christian.david@psi.ch

top

Pied de page

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Suisse

Téléphone: +41 56 310 21 11
Téléfax: +41 56 310 21 99

Comment nous trouver 
Contact

Centre de visiteurs psi forum
Laboratoire élèves iLab (en allemand)
Centre de protonthérapie
Centre de Formation du PSI
PSI Guest House (en anglais)
PSI Gastronomie (en allemand)
psi forum shop

Service & Support

  • Annuaire
  • User Office
  • Accelerator Status
  • Publications du PSI
  • Fournisseurs
  • E-facture
  • Computing (en anglais)
  • Sicherheit (en allemand)

Carrière

  • Travailler au PSI
  • Offres d'emploi
  • Formation initiale et formation continue
  • Career Center
  • Formation professionnelle (en allemand)
  • Centre de Formation du PSI

Pour les médias

  • Le PSI en bref
  • Chiffres et faits
  • Le coin médias
  • Communiqués de presse
  • Réseaux sociaux

Suivez le PSI: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Impressum
  • Conditions d'utilisation
  • Login éditeurs