Group Research Summary
Class A G protein-coupled receptor (GPCRs) transduce extracellular signals across the cell membrane by activating cytoplasmic-bound heterotrimeric GTP binding proteins (G proteins), which, in turn, modulate the activity of downstream effector proteins. Despite the physiological and pharmacological relevance of GPCRs, the structural basis of ligand efficacy and receptor activation, and how these elements translate into cytoplasmic trafficking and cellular response still remain elusive. In my group we integrate data from structural biology, molecular biology, cellular biology and structural bioinformatics to study the molecular basis of GPCR function. Specifically, we aim to obtain the crystal structure of the complexes between GPCRs and their cytoplasmic partners, the centre-pieces that connect extracellular stimuli to intracellular signals. In addition, we compare the profile of activated signalling molecules with their dynamic intracellular localisation pattern to learn how receptor activation translates into specific pathways of cellular signalling. Combination of the data resulting from the study of different Class A GPCRs will allow us to obtain a global picture of GPCR signalling. Our goal is to link receptor structure, cellular biological data and pharmacological results to physiological function.
I have long-standing expertise with light-activated GPCRs, in particular mammalian rhodopsin and, more recently, invertebrate rhodopsins, for example Jumping Spider Rhodopsin. In collaboration with partners with expertise in spectroscopic analysis of retinal proteins and in vivo applications of these proteins, we aim to understand in atomic detail the structure-function relationship between the retinal binding pocket and i) the spectroscopic properties of the protein, ii) the molecular basis of mono- versus instability and iii) molecular determinants of G-protein selectivity. Together, this will allow for the design of next-generation of optogenetic tools, allowing for photon-mediated control of major signalling pathways in any cell type.
Representative publications
Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the gβ subunit
Tsai CJ, Marino J, Adaixo R, Pamula F, Muehle J, Maeda S, Flock T, Taylor NM, Mohammed I, Matile H, Dawson RJ, Deupi X, Stahlberg H, Schertler GF.
Elife. 2019;18:e46041.
Crystal structure of jumping spider rhodopsin-1 as a light sensitive GPCR
Varma N, Mutt E, Mühle J, Panneels V, Terakita A, Deupi X, Nogly P, Schertler GF, Lesca E.
PNAS. 2019;116(29):14547-14556.
Crystal structure of rhodopsin in complex with a mini-G o sheds light on the principles of G protein selectivity
Tsai CJ, Pamula F, Nehmé R, Mühle J, Weinert T, Flock T, Nogly P, Edwards PC, Carpenter B, Gruhl T, Ma P, Deupi X, Standfuss J, Tate CG, Schertler GFX.
Sci Adv 2018;4(9):eaat7052
Molecular signatures of G-protein-coupled receptors
Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM.
Nature 2013;494(7436):185-94
The structural basis for agonist and partial agonist action on a β(1)-adrenergic receptor.
Warne T, Moukhametzianov R, Baker JG, Nehmé R, Edwards PC, Leslie AG, Schertler GF, Tate CG.
Nature. 2011;469(7329):241-4.
Group Members
Group Leader Structural Biology of Membrane Proteins
Senior scientist
Condensed Matter Theory Group >>
Building/Room: WHGA/123
Research scientist
GPCR signaling :: membrane protein biochemistry
PhD Student
Condensed Matter Theory Group>>
Building/Room: WHGA/123
Publications
2024
-
Bonifer C, Hanke W, Mühle J, Löhr F, Becker-Baldus J, Nagel J, et al.
Structural response of G protein binding to the cyclodepsipeptide inhibitor FR900359 probed by NMR spectroscopy
Chemical Science. 2024; 15(32): 12939-12956. https://doi.org/10.1039/d4sc01950d
DORA PSI -
Rodrigues MJ, Tejero O, Mühle J, Pamula F, Das I, Tsai CJ, et al.
Activating an invertebrate bistable opsin with the all-trans 6.11 retinal analog
Proceedings of the National Academy of Sciences of the United States of America PNAS. 2024; 121(31): e2406814121 (3 pp.). https://doi.org/10.1073/pnas.2406814121
DORA PSI -
Gotthard G, Mous S, Weinert T, Maia RNA, James D, Dworkowski F, et al.
Capturing the blue-light activated state of the Phot-LOV1 domain from Chlamydomonas reinhardtii using time-resolved serial synchrotron crystallography
IUCrJ. 2024; 11(5): (17 pp.). https://doi.org/10.1107/S2052252524005608
DORA PSI -
Bertalan É, Rodrigues MJ, Schertler GFX, Bondar AN
Graph-based algorithms to dissect long-distance water-mediated H-bond networks for conformational couplings in GPCRs
British Journal of Pharmacology. 2024. https://doi.org/10.1111/bph.16387
DORA PSI
2023
-
Casadei CM, Hosseinizadeh A, Bliven S, Weinert T, Standfuss J, Fung R, et al.
Low-pass spectral analysis of time-resolved serial femtosecond crystallography data
Structural Dynamics. 2023; 10(3): 034101 (18 pp.). https://doi.org/10.1063/4.0000178
DORA PSI -
Barret DCA, Schuster D, Rodrigues MJ, Leitner A, Picotti P, Schertler GFX, et al.
Structural basis of calmodulin modulation of the rod cyclic nucleotide-gated channel
Proceedings of the National Academy of Sciences of the United States of America PNAS. 2023; 120(15): e2300309120 (10 pp.). https://doi.org/10.1073/pnas.2300309120
DORA PSI -
Gruhl T, Weinert T, Rodrigues MJ, Milne CJ, Ortolani G, Nass K, et al.
Ultrafast structural changes direct the first molecular events of vision
Nature. 2023; 615: 939-944. https://doi.org/10.1038/s41586-023-05863-6
DORA PSI -
Rodrigues MJ, Casadei CM, Weinert T, Panneels V, Schertler GFX
Correction of rhodopsin serial crystallography diffraction intensities for a lattice-translocation defect
Acta Crystallographica Section D: Structural Biology. 2023; 79(3): D79 (10 pp.). https://doi.org/10.1107/S2059798323000931
DORA PSI -
Emmenegger M, De Cecco E, Lamparter D, Jacquat RPB, Riou J, Menges D, et al.
Continuous population-level monitoring of SARS-CoV-2 seroprevalence in a large European metropolitan region
iScience. 2023; 26(2): 105928 (34 pp.). https://doi.org/10.1016/j.isci.2023.105928
DORA PSI
2022
-
Casadei CM, Hosseinizadeh A, Schertler GFX, Ourmazd A, Santra R
Dynamics retrieval from stochastically weighted incomplete data by low-pass spectral analysis
Structural Dynamics. 2022; 9(4): 044101 (9 pp.). https://doi.org/10.1063/4.0000156
DORA PSI -
Mous S, Gotthard G, Ehrenberg D, Sen S, Weinert T, Johnson PJM, et al.
Dynamics and mechanism of a light-driven chloride pump
Science. 2022; 375(6583): 845-851. https://doi.org/10.1126/science.abj6663
DORA PSI -
Barret DCA, Schertler GFX, Benjamin Kaupp U, Marino J
The structure of the native CNGA1/CNGB1 CNG channel from bovine retinal rods
Nature Structural and Molecular Biology. 2022; 29(1): 32-39. https://doi.org/10.1038/s41594-021-00700-8
DORA PSI -
Barret DCA, Schertler GFX, Kaupp UB, Marino J
Structural basis of the partially open central gate in the human CNGA1/CNGB1 channel explained by additional density for calmodulin in cryo-EM map
Journal of Structural Biology. 2022; 214(1): 107828 (5 pp.). https://doi.org/10.1016/j.jsb.2021.107828
DORA PSI
2021
-
Casadei CM, Hosseinizadeh A, Schertler GFX, Ourmazd A, Santra R
Dynamics retrieval from stochastically weighted incomplete data by low-pass spectral analysis
Structural Dynamics. 2022; 9(4): 044101 (9 pp.). https://doi.org/10.1063/4.0000156
DORA PSI -
Mous S, Gotthard G, Ehrenberg D, Sen S, Weinert T, Johnson PJM, et al.
Dynamics and mechanism of a light-driven chloride pump
Science. 2022; 375(6583): 845-851. https://doi.org/10.1126/science.abj6663
DORA PSI -
Barret DCA, Schertler GFX, Benjamin Kaupp U, Marino J
The structure of the native CNGA1/CNGB1 CNG channel from bovine retinal rods
Nature Structural and Molecular Biology. 2022; 29(1): 32-39. https://doi.org/10.1038/s41594-021-00700-8
DORA PSI -
Barret DCA, Schertler GFX, Kaupp UB, Marino J
Structural basis of the partially open central gate in the human CNGA1/CNGB1 channel explained by additional density for calmodulin in cryo-EM map
Journal of Structural Biology. 2022; 214(1): 107828 (5 pp.). https://doi.org/10.1016/j.jsb.2021.107828
DORA PSI -
Romantini N, Alam S, Dobitz S, Spillmann M, De Foresta M, Schibli R, et al.
Exploring the signaling space of a GPCR using bivalent ligands with a rigid oligoproline backbone
Proceedings of the National Academy of Sciences of the United States of America PNAS. 2021; 118(48): e2108776118 (8 pp.). https://doi.org/10.1073/pnas.2108776118
DORA PSI -
Bertalan É, Lesca E, Schertler GFX, Bondar A-N
C-Graphs tool with graphical user interface to dissect conserved hydrogen-bond networks: applications to visual rhodopsins
Journal of Chemical Information and Modeling. 2021; 61(11): 5692-5707. https://doi.org/10.1021/acs.jcim.1c00827
DORA PSI -
Wu N, Olechwier AM, Brunner C, Edwards PC, Tsai C-J, Tate CG, et al.
High-mass MALDI-MS unravels ligand-mediated G protein-coupling selectivity to GPCRs
Proceedings of the National Academy of Sciences of the United States of America PNAS. 2021; 118(31): e2024146118 (9 pp.). https://doi.org/10.1073/pnas.2024146118
DORA PSI -
Panneels V, Diaz A, Imsand C, Guizar-Sicairos M, Müller E, Bittermann AG, et al.
Imaging of retina cellular and subcellular structures using ptychographic hard X-ray tomography
Journal of Cell Science. 2021; 134(19): jcs258561 (8 pp.). https://doi.org/10.1242/jcs.258561
DORA PSI -
Isaikina P, Tsai C-J, Dietz N, Pamula F, Grahl A, Goldie KN, et al.
Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist
Science Advances. 2021; 7(25): eabg8685 (11 pp.). https://doi.org/10.1126/sciadv.abg8685
DORA PSI -
Marino J, Schertler GFX
A set of common movements within GPCR-G-protein complexes from variability analysis of cryo-EM datasets
Journal of Structural Biology. 2021; 213(2): 107699 (7 pp.). https://doi.org/10.1016/j.jsb.2021.107699
DORA PSI -
Abiko LA, Rogowski M, Gautier A, Schertler G, Grzesiek S
Efficient production of a functional G protein-coupled receptor in E. coli for structural studies
Journal of Biomolecular NMR. 2021; 75(1): 25-38. https://doi.org/10.1007/s10858-020-00354-6
DORA PSI
2020
-
Tsai C-J, Schertler GFX
Membrane protein crystallization
In: Renaud J-P, ed. Structural biology in drug discovery. Methods, techniques, and practices. Hoboken: John Wiley & Sons, Inc.; 2020:187-210. https://doi.org/10.1002/9781118681121.ch9
DORA PSI -
Romantini N, Alam S, Dobitz S, Spillmann M, De Foresta M, Schibli R, et al.
Exploring the signaling space of a GPCR using bivalent ligands with a rigid oligoproline backbone
Proceedings of the National Academy of Sciences of the United States of America PNAS. 2021; 118(48): e2108776118 (8 pp.). https://doi.org/10.1073/pnas.2108776118
DORA PSI -
Bertalan É, Lesca E, Schertler GFX, Bondar A-N
C-Graphs tool with graphical user interface to dissect conserved hydrogen-bond networks: applications to visual rhodopsins
Journal of Chemical Information and Modeling. 2021; 61(11): 5692-5707. https://doi.org/10.1021/acs.jcim.1c00827
DORA PSI -
Wu N, Olechwier AM, Brunner C, Edwards PC, Tsai C-J, Tate CG, et al.
High-mass MALDI-MS unravels ligand-mediated G protein-coupling selectivity to GPCRs
Proceedings of the National Academy of Sciences of the United States of America PNAS. 2021; 118(31): e2024146118 (9 pp.). https://doi.org/10.1073/pnas.2024146118
DORA PSI -
Panneels V, Diaz A, Imsand C, Guizar-Sicairos M, Müller E, Bittermann AG, et al.
Imaging of retina cellular and subcellular structures using ptychographic hard X-ray tomography
Journal of Cell Science. 2021; 134(19): jcs258561 (8 pp.). https://doi.org/10.1242/jcs.258561
DORA PSI -
Isaikina P, Tsai C-J, Dietz N, Pamula F, Grahl A, Goldie KN, et al.
Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist
Science Advances. 2021; 7(25): eabg8685 (11 pp.). https://doi.org/10.1126/sciadv.abg8685
DORA PSI -
Marino J, Schertler GFX
A set of common movements within GPCR-G-protein complexes from variability analysis of cryo-EM datasets
Journal of Structural Biology. 2021; 213(2): 107699 (7 pp.). https://doi.org/10.1016/j.jsb.2021.107699
DORA PSI -
Abiko LA, Rogowski M, Gautier A, Schertler G, Grzesiek S
Efficient production of a functional G protein-coupled receptor in E. coli for structural studies
Journal of Biomolecular NMR. 2021; 75(1): 25-38. https://doi.org/10.1007/s10858-020-00354-6
DORA PSI -
Rößler P, Mayer D, Tsai C-J, Veprintsev DB, Schertler GFX, Gossert AD
GPCR activation states induced by nanobodies and mini-G proteins compared by NMR spectroscopy
Molecules. 2020; 25(24): 5984 (17 pp.). https://doi.org/10.3390/molecules25245984
DORA PSI -
Henzi A, Senatore A, Lakkaraju AKK, Scheckel C, Mühle J, Reimann R, et al.
Soluble dimeric prion protein ligand activates Adgrg6 receptor but does not rescue early signs of demyelination in PrP-deficient mice
PLoS One. 2020; 15(11): e0242137 (22 pp.). https://doi.org/10.1371/journal.pone.0242137
DORA PSI -
Nass K, Cheng R, Vera L, Mozzanica A, Redford S, Ozerov D, et al.
Advances in long-wavelength native phasing at X-ray free-electron lasers
IUCrJ. 2020; 7: 965-975. https://doi.org/10.1107/S2052252520011379
DORA PSI -
Avsar SY, Kapinos LE, Schoenenberger C-A, Schertler GFX, Mühle J, Meger B, et al.
Immobilization of arrestin-3 on different biosensor platforms for evaluating GPCR binding
Physical Chemistry Chemical Physics. 2020; 22(41): 24086-24096. https://doi.org/10.1039/d0cp01464h
DORA PSI -
Karathanou K, Lazaratos M, Bertalan É, Siemers M, Buzar K, Schertler GFX, et al.
A graph-based approach identifies dynamic H-bond communication networks in spike protein S of SARS-CoV-2
Journal of Structural Biology. 2020; 212(2): 107617 (19 pp.). https://doi.org/10.1016/j.jsb.2020.107617
DORA PSI -
Spillmann M, Thurner L, Romantini N, Zimmermann M, Meger B, Behe M, et al.
New insights into arrestin recruitment to GPCRs
International Journal of Molecular Sciences. 2020; 21(14): 4949 (14 pp.). https://doi.org/10.3390/ijms21144949
DORA PSI -
Skopintsev P, Ehrenberg D, Weinert T, James D, Kar RK, Johnson PJM, et al.
Femtosecond-to-millisecond structural changes in a light-driven sodium pump
Nature. 2020; 583: 314-318. https://doi.org/10.1038/s41586-020-2307-8
DORA PSI
2019
-
Tsai C-J, Marino J, Adaixo R, Pamula F, Muehle J, Maeda S, et al.
Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the gβ subunit
eLife. 2019; 8: e46041 (19 pp.). https://doi.org/10.7554/eLife.46041
DORA PSI -
Varma N, Mutt E, Mühle J, Panneels V, Terakita A, Deupi X, et al.
Crystal structure of jumping spider rhodopsin-1 as a light sensitive GPCR
Proceedings of the National Academy of Sciences of the United States of America PNAS. 2019; 116(29): 14547-14556. https://doi.org/10.1073/pnas.1902192116
DORA PSI -
Nagata T, Koyanagi M, Tsukamoto H, Mutt E, Schertler GFX, Deupi X, et al.
The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation
Communications Biology. 2019; 2: 180 (9 pp.). https://doi.org/10.1038/s42003-019-0409-3
DORA PSI -
Ehrenberg D, Varma N, Deupi X, Koyanagi M, Terakita A, Schertler GFX, et al.
The two-photon reversible reaction of the bistable jumping spider rhodopsin-1
Biophysical Journal. 2019; 116(7): 1248-1258. https://doi.org/10.1016/j.bpj.2019.02.025
DORA PSI -
Mayer D, Damberger FF, Samarasimhareddy M, Feldmueller M, Vuckovic Z, Flock T, et al.
Distinct G protein-coupled receptor phosphorylation motifs modulate arrestin affinity and activation and global conformation
Nature Communications. 2019; 10: 1261 (14 pp.). https://doi.org/10.1038/s41467-019-09204-y
DORA PSI -
Haider RS, Wilhelm F, Rizk A, Mutt E, Deupi X, Peterhans C, et al.
Arrestin-1 engineering facilitates complex stabilization with native rhodopsin
Scientific Reports. 2019; 9(1): 439 (13 pp.). https://doi.org/10.1038/s41598-018-36881-4
DORA PSI
2018
- Convergent evolution of tertiary structure in rhodopsin visual proteins from vertebrates and box jellyfish
Proceedings of the National Academy of Sciences 115, 6201 (2018).DOI: 10.1073/pnas.1721333115
- Crystal structure of rhodopsin in complex with a mini-G o sheds light on the principles of G protein selectivity
Science Advances 4, eaat7052 (2018).DOI: 10.1126/sciadv.aat7052
- Development of an antibody fragment that stabilizes GPCR/G-protein complexes
NATURE COMMUNICATIONS 9, 3712 (2018).DOI: 10.1038/s41467-018-06002-w
- Ligand channel in pharmacologically stabilized rhodopsin.
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 115, 3640 (2018).
- Light induced charge and energy transport in nucleic acids and proteins: general discussion
FARADAY DISCUSSIONS 207, 153 (2018).DOI: 10.1039/c8fd90004c
- Photocrosslinking between nucleic acids and proteins: general discussion
FARADAY DISCUSSIONS 207, 283 (2018).DOI: 10.1039/c8fd90005a
- Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser
SCIENCE 361, 145 (2018).DOI: 10.1126/science.aat0094
- Structure of the µ-opioid receptor?Gi protein complex
NATURE -, - (2018).DOI: 10.1038/s41586-018-0219-7
- The role of water molecules in phototransduction of retinal proteins and G protein-coupled receptors
FARADAY DISCUSSIONS 207, 27 (2018).DOI: 10.1039/c7fd00207f
2017
-
Comprehensive Analysis of the Role of Arrestin Residues in Receptor Binding
Springer International Publishing -, 83 (2017).DOI: 10.1007/978-3-319-57553-7_7
-
Perspective: Opportunities for ultrafast science at SwissFEL
STRUCTURAL DYNAMICS 4, 061602 (2017).DOI: 10.1063/1.4997222
-
Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons
NATURE COMMUNICATIONS 8, 542 (2017).DOI: 10.1038/s41467-017-00630-4
2016
-
A three-dimensional movie of structural changes in bacteriorhodopsin
SCIENCE 354, 1552-1557 (2016).DOI: 10.1126/science.aah3497
-
Addendum to Three-dimensional mass density mapping of cellular ultrastructure by ptychographic X-ray nanotomography [J. Struct. Biol. 192 (2015) 461-469]
JOURNAL OF STRUCTURAL BIOLOGY 193, 83 (2016).DOI: 10.1016/j.jsb.2015.12.003
-
Backbone NMR reveals allosteric signal transduction networks in the beta1-adrenergic receptor
NATURE 530, 237 (2016).DOI: 10.1038/nature16577
-
Conformational Selection in a Protein-Protein Interaction Revealed by Dynamic Pathway Analysis
CELL REPORTS 14, 32 (2016).DOI: 10.1016/j.celrep.2015.12.010
-
Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region
NATURE 536, 484 (2016).DOI: 10.1038/nature19107
-
Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography
NATURE COMMUNICATIONS 7, 12314 (2016).DOI: 10.1038/ncomms12314
-
Structural role of the T94I rhodopsin mutation in congenital stationary night blindness
EMBO REPORTS 17, 1431-1440 (2016).DOI: 10.15252/embr.201642671
-
Three-dimensional mass density mapping of cellular ultrastructure by ptychographic X-ray nanotomography (vol 192, pg 461, 2015)
JOURNAL OF STRUCTURAL BIOLOGY 193, 83-83 (2016).DOI: 10.1016/j.jsb.2015.12.003
2015
-
Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 71, 856 (2015).DOI: 10.1107/S2053230X15009966
-
Conformational activation of visual rhodopsin in native disc membranes
Science Signaling 8, ra26 (2015).DOI: 10.1126/scisignal.2005646
-
GPCR structure, function, drug discovery and crystallography: report from Academia-Industry International Conference (UK Royal Society) Chicheley Hall, 1?2 September 2014
Naunyn-Schmiedeberg's Archives of Pharmacology 388, 883 (2015).DOI: 10.1007/s00210-015-1111-8
-
Large scale expression and purification of the rat 5-HT2c receptor
PROTEIN EXPRESSION AND PURIFICATION 106, 1 (2015).DOI: 10.1016/j.pep.2014.10.010
-
Lipidic cubic phase serial millisecond crystallography using synchrotron radiation
IUCRJ 2, 168-176 (2015).DOI: 10.1107/S2052252514026487
-
Membrane protein structural biology using X-ray free electron lasers
CURRENT OPINION IN STRUCTURAL BIOLOGY 33, 115 (2015).DOI: 10.1016/j.sbi.2015.08.006
-
Probing Galpha_i1 protein activation at single?amino acid resolution
NATURE STRUCTURAL & MOLECULAR BIOLOGY 22, 686 (2015).DOI: 10.1038/nsmb.3070
-
Rhodopsin on Tracks: New Ways to Go in Signaling
STRUCTURE 23, 606 (2015).DOI: 10.1016/j.str.2015.03.008
-
Three-dimensional mass density mapping of cellular ultrastructure by ptychographic X-ray nanotomography
JOURNAL OF STRUCTURAL BIOLOGY 192, 461 (2015).DOI: 10.1016/j.jsb.2015.10.008
-
Time-resolved structural studies with serial crystallography: A new light on retinal proteins
STRUCTURAL DYNAMICS 2, 041718 (2015).DOI: 10.1063/1.4922774
2014
-
7 angstrom resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES 369, UNSP 20130500 (2014).DOI: 10.1098/rstb.2013.0500
-
Crystallization Scale Preparation of a Stable GPCR Signaling Complex between Constitutively Active Rhodopsin and G-Protein
PLOS ONE 9, e98714 (2014).DOI: 10.1371/journal.pone.0098714
-
Femtosecond X-ray diffraction from two-dimensional protein crystals
IUCRJ 1, 95-100 (2014).DOI: 10.1107/S2052252514001444
-
Molecular mechanism of phosphorylation-dependent arrestin activation
CURRENT OPINION IN STRUCTURAL BIOLOGY 29, 143 (2014).DOI: 10.1016/j.sbi.2014.07.006
-
Retinal proteins - You can teach an old dog new tricks Foreword
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1837, 531-532 (2014).DOI: 10.1016/j.bbabio.2014.02.019
-
Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A
NATURE 505, 108-+ (2014).DOI: 10.1038/nature12732
-
The 2.1 Å Resolution Structure of Cyanopindolol-Bound ?1-Adrenoceptor Identifies an Intramembrane Na+ Ion that Stabilises the Ligand-Free Receptor
PLOS ONE 9, e92727 (2014).DOI: 10.1371/journal.pone.0092727
2013
-
Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding
CELLULAR SIGNALLING 25, 2155 (2013).DOI: 10.1016/j.cellsig.2013.07.009
-
Insights into congenital stationary night blindness based on the structure of G90D rhodopsin
EMBO REPORTS 14, 520-526 (2013).DOI: 10.1038/embor.2013.44
-
Molecular signatures of G-protein-coupled receptors
NATURE 494, 185-194 (2013).DOI: 10.1038/nature11896
-
Production of GPCR and GPCR complexes for structure determination
CURRENT OPINION IN STRUCTURAL BIOLOGY 23, 381 (2013).DOI: 10.1016/j.sbi.2013.04.006
-
Structure of beta-Adrenergic Receptors
G PROTEIN COUPLED RECEPTORS: STRUCTURE 520, 117-151 (2013).DOI: 10.1016/B978-0-12-391861-1.00006-X
-
Two Alternative Conformations of a Voltage-Gated Sodium Channel
JOURNAL OF MOLECULAR BIOLOGY 425, 4074 (2013).DOI: 10.1016/j.jmb.2013.06.036
2012
-
Conserved activation pathways in G-protein-coupled receptors
BIOCHEMICAL SOCIETY TRANSACTIONS 40, 383-388 (2012).DOI: 10.1042/BST20120001
-
Ligands Stabilize Specific GPCR Conformations: But How?
STRUCTURE 20, 1289-1290 (2012).DOI: 10.1016/j.str.2012.07.009
-
Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 109, 119 (2012).DOI: 10.1073/pnas.1114089108
2011
-
?4D Biology for health and disease? workshop report
New Biotechnology 28, 291 (2011).DOI: 10.1016/j.nbt.2010.10.003
-
Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay
CELLULAR AND MOLECULAR LIFE SCIENCES 68, 3713 (2011).DOI: 10.1007/s00018-011-0665-y
-
Membranes
CURRENT OPINION IN STRUCTURAL BIOLOGY 21, 495 (2011).DOI: 10.1016/j.sbi.2011.08.001
-
Preparation of an Activated Rhodopsin/Transducin Complex Using a Constitutively Active Mutant of Rhodopsin
BIOCHEMISTRY 50, 10399 (2011).DOI: 10.1021/bi201126r
-
The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor
NATURE 469, 241 (2011).DOI: 10.1038/nature09746
-
The structural basis of agonist-induced activation in constitutively active rhodopsin
NATURE 471, 656 (2011).DOI: 10.1038/nature09795
-
Two distinct conformations of helix 6 observed in antagonist-bound structures of a beta(1)-adrenergic receptor
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 108, 8228 (2011).DOI: 10.1073/pnas.1100185108
2010
-
Spial: analysis of subtype-specific features in multiple sequence alignments of proteins
BIOINFORMATICS 26, 2906 (2010).DOI: 10.1093/bioinformatics/btq552
-
Tracking G-protein-coupled receptor activation using genetically encoded infrared probes
NATURE 464, 1386 (2010).DOI: 10.1038/nature08948
2009
-
Engineering G protein-coupled receptors to facilitate their structure determination
CURRENT OPINION IN STRUCTURAL BIOLOGY 19, 386 (2009).DOI: 10.1016/j.sbi.2009.07.004
Former Members
Brueckner, Florian Dr.
Postdoc
Ostermaier, Martin Dr.
Scientific Officer