Plasma and Thin Film Analysis
We are interested to improve the understanding of the fundamentals of pulsed laser deposition (PLD), in particular with respect to the deposition of oxide thin films in order to gain a better control over the deposition process. To accomplish this goal, we make use of analytical techniques such as XRD, SIMS, RBS and ICP-Mass spectrometry, to investigate the crystalline structure as well as the stoichiometry of the thin films deposited under different conditions. Complementary to film structure and composition, we study in detail the PLD plasma properties based on in situ plasma analysis techniques such as mass spectrometry, emission spectrometry and plasma imaging. Combining both approaches, plasma deposition and film properties, we seek to achieve a quantitative monitoring and control of intended film properties during the ablation process.
Mass spectrometry
Combining quadrupole mass selector with kinetic energy selector
The mass spectroscopy setup enables a better understanding of the species composition (left figure) and their respective energy distribution in the plasma (right figure). Information about the detected positive, negative and neutral species in the laser induced plasma can also be obtained. However, for neutral species only a qualitative analysis is possible to to the unkonwn ionisation cross sections of the arriving species.
Langmuir probe
Secondary Ion Mass Spectrometry (SIMS)
Plasma Imaging and Spectroscopy
Complementary to mass spectroscopy, we investigate the excited species in the laser induced plasma by emission spectroscopy. The first photo shows the experimental imaging/spectroscopy set-up where an image of the laser induced plasma is projected onto the entrance slid of the monochrometer via the indicated optical beam path. Through the combination of different delay times, we can record a spatially and time resolved emission spectrum of the plasma (top right image). The second image shows a La0.6Ca0.4MnO3 spectrum recorded with the spectrometer set-up between 500 and 520nm. Bottom: excitation lines published in the NIST database for the same wavelenght range.

The plasma imaging set-up is shown in the left image. A high speed gated ICCD camera (Andor New i-star) is used to record the time evolution of the ablated material. The images are recorded for either all light admitted through a quartz window (200nm-1000nm) or for selected wavelengths using an Acousto-optic tunable filter (AOTF, 400-1000 nm). The Brimrose models VA210-0.55-1.0-H and VA210-0.40-0.65-H) has a wavelength resolution of 0.6-3 nm with a manufacturer certified resolution of 1.3 nm at 633 nm. An image of an experimental arrangement (cylindrical Ag target with a target-heater/MS distance of 4cm is shown (Fig. (a)), followed by an all light image of the expanding plasma with (b) and without (c) heater. Images by Yao Xiang and Alejandro Ojeda.
As an example of selected line imaging using an AOTF, the next images show the spatial distributions of Ag and Ar excited neutrals at the same time frame of 1.4µs. The AOTF selected optical excitation lines were 827.35 nm for Ag I and 811.53 nm for Ar I. For each image 100 accumulations were used to increase image resolution. The gradients are normalized to the maximum counts for each image. More details can be found in J. Appl. Phys. 120, 225301 (2016).