Strain engineering of the charge and spin-orbital interactions in Sr2IrO4

Understanding the relationship between entangled degrees of freedom (DOF) is a central problem in correlated materials and the possibility to influence their balance is promising toward realizing novel functionalities. In Sr2IrO4, the interaction between spin–orbit coupling and electron correlations induces an exotic ground state with magnetotransport properties promising for antiferromagnetic spintronics applications. Moreover, the coupling between orbital and spin DOF renders the magnetic structure sensitive to the Ir–O bond environment. To date, a detailed understanding of the microscopic spin-lattice and electron–phonon interactions is still lacking. Here, we use strain engineering to perturb the local lattice environment and, by tracking the response of the low-energy elementary excitations, we unveil the response of the microscopic spin and charge interactions.