Scientific Highlights

Datum
22. Juni 2023
Ganter

A metal alloy like a sponge

Research Using Synchrotron Light Large Research Facilities SLS 2.0

Once the vacuum chambers for the SLS 2.0 upgrade are the right shape, they still need a special surface coating.

Weiterlesen
15. Juni 2023
René Sieber

A six-metre high oven

Research Using Synchrotron Light Large Research Facilities SLS 2.0

The most complicated vacuum chambers for the SLS 2.0 upgrade are being built in the PSI workshop.

Weiterlesen
9. Juni 2023
Werkstücke

500 vacuum chambers for the new ring

Research Using Synchrotron Light Large Research Facilities SLS 2.0

Making the tube through which the electrons will race after the SLS 2.0 upgrade.

Weiterlesen
5. Oktober 2022
Magnetic measurements team

Ready for SLS2.0: First magnet series measurement completed

The first magnet series consisting of 112 quadrupole electromagnets for SLS2.0 were measured to high precision using a special home-made rotating coils measurement system. This is an important step forward for the realization of SLS2.0, the upgrade of the Swiss Light Source (SLS) at PSI, and a milestone for the members of the Magnet Section in GFA.

Weiterlesen
15. Februar 2022
Reiche, Aeppli and Gerber

Opening the door to X-ray quantum optics

The 'perfect' X-ray beam-splitter: Researchers at SwissFEL have an ingenious solution to produce coherent copies of pulses, facilitating a realm of new X-ray techniques.

Weiterlesen
5. Mai 2021
teaser

New record photon pulse energies at SwissFEL

The very large number of coherent photons produced by free-electron lasers is one of the key qualities of such facilities, attracting users from numerous research fields including chemistry, biology and materials science. Recently, the two branches of PSI's free-electron laser SwissFEL each have reached new record pulse energies, packing more photons than ever before into ultrashort X-ray pulses delivered at rates of 100 Hz to the users of both beamlines.

Weiterlesen
28. Januar 2021
Next generation transverse deflection structures capable of providing new opportunities for beam diagnostics.

Novel X-band transverse deflection structure with variable polarization

The growing request for sophisticated electron beam manipulation techniques for the optimization of Free Electron Lasers (FELs) or novel acceleration techniques requires enhanced beam control capabilities  and characterization. One of the most important challenge is the development of new diagnostic techniques able to characterize the longitudinal phase space of the beam, including spatial correlation terms, with a resolution in the range of a few tens of fs to sub-fs.

Weiterlesen
6. März 2020
fig_highlights_t.jpg

Demonstration of Large Bandwidth Hard X-Ray Free-Electron Laser Pulses at SwissFEL

We have produced hard x-ray free-electron laser (FEL) radiation with unprecedented large bandwidth tunable up to 2%. The experiments have been carried out at SwissFEL, the x-ray FEL facility at the Paul Scherrer Institute in Switzerland. The bandwidth is enhanced by maximizing the energy chirp of the electron beam, which is accomplished by optimizing the compression setup. We demonstrate continuous tunability of the bandwidth with a simple method only requiring a quadrupole magnet. The generation of such broadband FEL pulses will improve the efficiency of many techniques such as x-ray crystallography and spectroscopy, opening the door to significant progress in photon science. It has already been demonstrated that the broadband pulses of SwissFEL are beneficial to enhance the performance of crystallography, and further SwissFEL users plan to exploit this large bandwidth radiation to improve the efficiency of their measurement techniques.

Weiterlesen