Aller au contenu principal
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Rechercher
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOuvrir ce point de menu principal
    • Research Initiatives
    • Research Integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOuvrir ce point de menu principal
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Large Research Facilities
  • Facilities and InstrumentsOuvrir ce point de menu principal
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOuvrir ce point de menu principal
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

Vous êtes ici:

  1. PSI Home
  2. Labs & User Services
  3. PSD
  4. LMN
  5. Research Groups
  6. Quantum Technologies
  7. Current projects
  8. YIG: nonlinear magnonics

Navigation secondaire

Laboratory for Micro and Nanotechnology

  • About LMN
    • Organisational Structure
  • Open Positions
  • People
  • Research Groups Sous-menu élargi
    • Nanotechnology
    • X-ray Optics and Applications
      • X-ray Optics for Imaging and Spectroscopy
        • Fresnel Zone Plate for X-ray Microscopy
        • Blazed X-ray Optics
        • Zernike X-ray Phase Contrast Microscopy
        • Fresnel Zone Plates for RIXS
        • Refractive Lenses by 2 Photon 3D Lithography
      • Wavefront Metrology and Manipulation
        • Vortex Fresnel Zone Plates
        • Grating-based Wavefront Metrology
      • X-ray Optics for XFELs
        • Diamond Fresnel Zone Plates
        • Beam Splitter Gratings for Spectral Monitoring
        • A Delay Line for Ultrafast Pump-Probe Experiments
        • X-ray Streaking for Ultrafast Processes
    • Polymer Nanotechnology
      • Nanoimprint Lithography
      • Three Dimensional Structures
    • Molecular Nanoscience
      • On-surface Chemistry
      • Spins in Molecular Monolayers
      • SiC: Surfaces and Interfaces
      • Our Research Team
    • Advanced Lithography and Metrology
      • EUV Interference Lithography
      • EUV Lensless Imaging
      • ALM Nanoscience
    • Quantum Technologies Sous-menu élargi
      • News and highlights
      • People
      • Open positions
      • Current projects Sous-menu élargi
        • 2D semiconductor devices
        • CDW-based memory devices
        • Imaging quantum many-body states
        • Nonlinear magnonics
        • Rare-earth quantum magnets
        • Strained Germanium laser
      • Techniques
        • Cristallina-Q
        • IR beamline
        • Nano-fabrication
      • Publications
      • QTC@PSI
  • Facilities and Equipment
    • Cleanroom Labs
    • Surface Science Lab
    • Scanning Electron Microscopy
    • Scanning Probe Microscopy
    • PEARL Beamline
    • XIL Facility at the SLS
    • Nanoimprint Facilities
    • Electron Beam Lithography
  • LMN News
  • LMN Highlights
    • Archive
  • Publications
    • Publications 2011 - 2016

Info message

Ce contenu n'est pas disponible en français.

Nonlinear magnonics

Magnonics, the study and development of devices utilising collective spin excitations, is a rapidly growing field, covering both fundamental topics (antiferromagnetism[1], quasiparticle condensates[2]) and technological applications (MRAM[3], spintronics[4]). We use a host of optical, electrical and x-ray based techniques to study the nonlinear and quantum regimes of magnonics, with the goal of utilising such processes in future magnonic technologies.

spinwaves

Phase resolved measurement of spin waves in YIG.  Scanning x-ray microscope images are acquired synchronously with a CW RF excitation. The signal (3.5 GHz) is applied to the sample via a transmission line, exciting spin wave modes according to the external field and resulting dispersion. a) shows a transmission snapshot, the dark region is the RF line, the light grey region is the YIG, with the subtle changes in contrast being dynamic magnetic contrast. b)-f) show the amplitude and phase of the dynamics at the excitation frequency extracted via an FFT and mapped onto the brightness and hue channel in a hue saturation brightness (HSB) colour space.

The study of magnons, the quasiparticle description of collective spin excitations, and magnonics, the development of devices utilizing magnons to perform information processing tasks, are rapidly growing fields covering many important fundamental and technological topics1. A frequently proffered advantage of magnonics over conventional electronics is the lack of ohmic losses in the flow of magnons. This advantage is mute however in the presence of other significant dissipative losses such as Gilbert damping. Yttrium iron garnet (YIG), a ferrimagnetic insulating oxide, has long been appreciated in the context of high-Q microwave filters that make use of its sharp ferromagnetic resonance. However, the long magnon lifetime, with damping values up to three orders of magnitude lower than conventional metallic magnetic materials, along with advances in thin film growth and processing capabilities has seen a resurgence of interest in YIG from the magnonics community2.  

A phenomena closely linked to the extremely long lifetimes of magnons in YIG is their reported Bose-Einstein condensation (BEC) at room temperature3. A finding that has raised many questions about the nature of a quasiparticle BEC in quasi-equilibrium, its relation to traditional BECs familiar from cold atom physics, and other types of macroscopic coherent phenomena. From an applications perspective the incorporation of condensate related phenomena to the magnonics toolbox would open the door to supercurrents of magnons4 and quantum information processing5.  

The goal of this project is to use new x-ray techniques to study such exotic magnonic phenomena with a goal of developing devices. 

 

Project members

Joe Bailey
Dr. Joe Martin Bailey

Post-Doc

+41 56 310 25 60
joe.bailey@psi.ch
Gabiel Aeppli
Prof. Dr. Gabriel Aeppli

Head of Photon Science Division (PSD)
 

+41 56 310 42 32
gabriel.aeppli@psi.ch

1.    Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

2.    Nakata, K., Simon, P. & Loss, D. Spin currents and magnon dynamics in insulating magnets. J Phys D Appl Phys 50, 114004–20 (2017).

3.    Demokritov, S. O. et al. Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

4.    Bozhko, D. A. et al. Supercurrent in a room-temperature Bose–Einstein magnon condensate. Nat. Phys. 12, 1057–1062 (2016).

5.    Tabuchi, Y. et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 349, 405–408 (2015).

 

Sidebar

Contact

Dr. Simon Gerber

Laboratory for Micro-
and Nanotechnology
Paul Scherrer Institut
5232 Villigen PSI
Switzerland

Telephone:
+41 56 310 
Telefax:
+41 56 210 2646
E-mail:
simon.gerber@psi.ch
top

Pied de page

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Suisse

Téléphone: +41 56 310 21 11
Téléfax: +41 56 310 21 99

Comment nous trouver 
Formulaire de contact

Centre de visiteurs psi forum
Laboratoire élèves iLab (en allemand)
Centre de protonthérapie
Centre de Formation du PSI (en allemand)
PSI Guest House (en anglais)
PSI Gastronomie (en allemand)

Service & Support

  • ​Annuaire/Liste de contacts
  • User Office
  • Accelerator Status
  • Publications du PSI
  • Fournisseurs
  • E-facture
  • Computing (en anglais)
  • Sicherheit (en allemand)

Carrière

  • Travailler au PSI
  • Offres d'emploi
  • Formation initiale et formation continue
  • Formation professionnelle (en allemand)
  • Centre de Formation du PSI

Pour les médias

  • Le PSI en bref
  • Chiffres et faits
  • Contact destiné aux médias
  • Communiqués de presse
  • Social Media Newsroom

Suivez le PSI: Twitter (en allemand) LinkedIn Youtube Issuu RSS

Footer legal

  • Impressum
  • Conditions d'utilisation
  • Login éditeurs