Scientific Highlights 2017 and earlier

Figure 1: Phase-space after 40 turns. The numerical model (right) shown with characteristic phase-space points calculated with the analytic model (left).

ETH-Medal 2015 for outstanding MSc thesis

The detailed understanding of particle motion in the outer region (halo) of a bunched beam is of utmost importance for all existing and future high intensity hadron accelerators in view of minimizing particle losses and machine activation. Particle-core models separate the motion of halo particles from the core and treat them as test-particles. Therefore these reduced-order models are computationally inexpensive compared to full particle-in-cell simulations and can, to some extent, be derived analytically, thus giving insights into the non-linear mechanism of halo formation.

Weiterlesen
CTF-2 gun (left), new PSI Gun (middle) and Energy-spectrum of its first electron beam (right).

First beam from the SwissFEL electron gun

The new 3 GHz photocathode gun will provide the electron bunches for SwissFEL and has recently been installed in the SwissFEL injector test facility. There, it replaced the CTF2-gun 5, borrowed from CERN. The new gun is capable now of operation with 100Hz repetition frequency and a higher field on cathode and improved field symmetry. After RF conditioning of about 4 days, the gun reached the nominal acceleration gradient of 100 MV/m at an input power of about 17 MW and pulse-width of 1 microsecond.

Weiterlesen

RF Pulse compressor for the SwissFEL

The SwissFEL C-band (5.712 GHz) linac consists of 26 RF modules. Each module is composed of a single 50 MW klystron feeding a pulse compressor and four two meter long accelerating structures. The pulse compressor is a passive device that compresses in time the 3 μs pulse from klystron into a 330 ns pulse. The compressed power is then guided to the four accelerating structures. The pulse compressor is based on a single Barrel Open Cavity (BOC). The BOC makes use of a “whispering gallery” mode which has an intrinsically high quality factor and operates in resonant rotating wave regime (Figure 1); moreover, and contrary to the conventional SLED scheme, a single cavity is sufficient to define the pulse compressor, without the need for two cavities. A prototype has been manufactured by the Dutch company VDL (Figure 2) and successfully power tested in PSI reaching a peak power of 300 MW.

Weiterlesen
Material samples from the beam entrance window

MEGAPIE samples delivered to partners for post irradiation investigation

The MEGAWatt Pilot Experiment was operated for neutron generation with the PSI high intensity proton beam in 2006. The experiment utilized liquid target material, a lead bismuth eutectic. This marked a major milestone towards Accelerator Driven Systems (ADS), which are intended to be used for the incineration of nuclear waste.

Weiterlesen

ETH Zurich, IBM and Paul Scherrer Institut Researchers receive 2012 PRACE Award

The MEGAWatt Pilot Experiment was operated for neutron generation with the PSI high intensity proton beam in 2006. The experiment utilized liquid target material, a lead bismuth eutectic. This marked a major milestone towards Accelerator Driven Systems (ADS), which are intended to be used for the incineration of nuclear waste.

Weiterlesen
Beam cross section in comparison to a human hair

Vertical Emittance of the SLS Storage Ring

On the 6th of December 2011 the vertical emittance of the SLS storage ring could be reduced to a world record low value of 1pm rad. The vertical beam size in the short straight sections of the SLS is then only 3 micron (rms). This was achieved through vertical re-alignment of the magnet girders with 400mA stored beam and fast orbit feedback running, as well as through application of several different methods of coupling suppression using 36 skew quadrupoles. High resolution profile monitor utilizing vertically polarized component of synchrotron radiation allowed precise determination of the beam size.

Weiterlesen

PSI sets world record with 1.4 MW proton beam

The highest average power proton beam in the world was produced on 20th of June in the 590 MeV cyclotron at Paul Scherrer Institut. Extremely low beam losses achieved in this 35 years old veteran cyclotron allowed PSI team of accelerator scientists and engineers to put 1.4 MW beam of protons onto the muon and neutron spallation targets. This beam is used to produce the brightest beam of muons in the world, as well as supply neutrons for the spallation source SINQ.

Weiterlesen