GEMS specific HERACLES v.0.2. database for U, TRU and FP speciation

The HERACLES-TDB has been compiled to support modeling of U and fission products (FP) solid and gaseous speciation during pyroreprocessing of spent nuclear fuel. The database covers molar thermodynamic properties of compounds of actinides, fission products, and minor actinides covering the elements as shown above. At present, the data for over 340 condensed compounds (including melts and liquid condensates and over 290 gaseous (also charged) species are provided. The gas phase is treated as an ideal mixture of ideal gases; for melts the non-ideality of mixing is taken into account.

For each compound or gas, the stoichiometry formula is provided together with the molar enthalpy (of formation from elements at their standard states), absolute entropy and heat capacity at standard state (Tr = 298.15 K and Pr = 1 bar). In most cases, the molar Gibbs energy of formation at Tr was calculated from ΔH0(Tr) and S0(Tr) and entropies of elements at standard state. Necessary auxiliary thermodynamic data were taken from (Cox at al., 1989).

Values of standard molar Gibbs energy function ΔG0(Tr) of a compound, needed for calculation of equilibria at elevated temepratures, can be calculated from the following equation [Karpov et al., 1989]:

g_T^0 &=& G_{T_r}^0 - S_{T_r}^0 * (T-T_r)-T \sum_{i} Mn_i a_i

where G0(Tr) and S0(Tr) are the standard molar Gibbs energy and absolute entropy at Tr.

The terms Mni are given by equation:

Mn_i &=&  \dfrac{T^{n_i}}{n_i (n_i + 1)} + \dfrac{T_r^{n_i + 1}}{T (n_i + 1)} - \dfrac{T_r^{n_i}}{n_i}

where ni are power coefficients: n0 = 0; n1 = 1; n2 = -2; n3 = -0.5; n4 = 2; n5 = 3; n6 = 4; n7 = -3; n8 = -1; n9 = 0.5.

Empirical coefficients a0 - ai refer to the polinomial heat capacity function on temperature. In most of the cases i=5 corresponding to the Haas-Fischer equation (see eq. below). The data on Cp0= f (T) are provided for each compound in the database in the temperature range of 298 K – 3000 K. For gaseous species, methods of statistical thermodynamics were applied, hence the temperature interval considered is much broader and in some cases reaches 6000 K.

Cp(T) &=& a_0 + \sum_{i} a_i T^{n_i}

References used for the compilation of the database

  • NIST-JANAF Themochemical Tables Chase M.W., Jr
    JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA Fourth Edition, Monograph 9 , ( 1998 ).
  • Chemical thermodynamics of selenium Olin A., Noläng B., Öhman L.-O., Osadchii E.G., Rosen E. Ed.: Mompean F.J., Perrone J., Illemassene M.
    CHEMICAL THERMODYNAMICS series 7, (2005).
  • Update on the chemical thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technecium Guillaumont R., Fanghänel Th., Neck V., Fuger J., Palmer D.A., Grenthe I., Rand M.H. Ed.: Mompean F.J., Illemassene M., Domenech-Orti C. and Ben Said K.
    CHEMICAL THERMODYNAMICS series 5, (2003).
  • Thermochemical Data for Reactor Materials and Fission Products Cordfunke E.H.P., Konings R.J.M.
    Elsevier (1990).
  • Decomposition pressures and thermodynamic properties of RuTe2 Svendsen S.R.
    DOI: 10.1016/0021-9614(77)90023-4
  • The constitution of the ruthenium – tellurium system Bernath S., Kleykamp H., Smykatz-Kloss W.
    DOI: 10.1016/0022-3115(94)90287-9
  • Thermodynamic properties of individual substances Gurvich L.V., Veyts I.V., Medvedev V.A., Bergman G.A., Hachkuruzov G.A., Yungman V.S., Glushko V.P.
    "Nauka" publishing Fourth Edition (in Russian), (1978).
  • Chemical thermodynamics of Americium Silva R.J., Bidoglio G., Rand M.H., Robouch P.B., Wanner H., Puigdomenech I.
    CHEMICAL THERMODYNAMICS series 2, (2004).
  • Chemical thermodynamics of Technecium Rard J.A., Rand M.H., Anderegg G., Wanner H. Eds.: Sandino M.C.A. and E. Östhols
    CHEMICAL THERMODYNAMICS series 3, (1999).
  • Chemistry of the Elements Greenwood N.N.; Earnshaw, A.
    Oxford: Butterworth-Heinemann publishing Second edition, (1997).
  • Chemical Thermodynamics of Neptunium and Plutonium Fuger J., Nitsche H., Potter P., Rand M.H., Rydberg J., Spahiu K., Sullivan J.C., Ullman W.J., Vitorge P., Wanner H. Ed.: Lemire R.J.
    CHEMICAL THERMODYNAMICS series 4, (2001).
  • Actinide carbides. A review of thermodynamic properties Holley C.E., Jr., Storms E.K.
    IAEA PROCEEDINGS 397 (1967).
  • Thermodynamics of plutonium carbides Olson W.M., Mulford R.N.R.
    IAEA PROCEEDINGS 467 (1967).
  • Gaseous Actinide Ions in The Chemical Thermodynamics of Actinide Elements and Compounds Hildenbrand D.L., Gurvich L.V., Yungman V.S. Eds.: Oetting F.L., Medvedev V.A., Rand M.H., Westrum E.F., Jr.
    IAEA 13, 100 (1985).
  • Chemical thermodynamics of Thorium Rand M.H., Fuger J., Grenthe I., Neck V., Rai D. Eds.: Mompean F.J., Perrone J., Illemassene M.
    CHEMICAL THERMODYNAMICS series 11, 195 (2007).
  • Thorium: preparation and properties Smith J.F., Carlson O.N., Peterson D.T., Scott T.E.
    The Iowa State University Press 250 (1975).
  • CODATA Key Values for Thermodynamics Cox J.D., Wagman D.D. Eds.: Cox J.D., Wagman D.D., Medvedev V.A.
    Hemisphere Publishing Corporation ( 1989).
  • CODATA Thermodynamic Tables Garvin D., Parker V.B., White H.J., Jr.
    National Bureau of Standards (1987).
  • Simultaneous evaluation and correlation of thermodynamic data Haas J.L.Jr., Fischer J.R.
    AMERICAN JOURNAL of SCIENCE 225, 276 (1976).
    DOI: 10.2475/ajs.276.4.525
  • Chemical Enciclopedie Knunyanz I.L.
    "Sovetskaya Enciclopedia" publishing (in Russian), 128 (1998).
  • Thermochemical properties of pure substances Barin I.
    VCH (1995).
  • Die Flüchtigkeitsergenschaften des Poloniums Eichler B.
    PSI REPORT 02-12, (2002).
Natalia Shcherbina

to the main page