News and Highlights

Datum
Mielke et al

Low-temperature magnetic crossover in the topological kagome magnet TbMn6Sn6

Magnetic topological phases of quantum matter are an emerging frontier in physics and materials science, of which kagome magnets appear as a highly promising platform. Here, we explore magnetic correlations in the recently identified topological kagome system TbMn6Sn6 using muon spin rotation, combined with local field analysis and neutron diffraction. Our studies identify an out-of-plane ferrimagnetic structure with slow magnetic fluctuations which exhibit a critical slowing down below T*C1 ≃ 120 K and finally freeze into static patches with ideal out-of-plane order below TC1 ≃ 20 K....

 

Weiterlesen
Kagome lattice and orbital currents

New insight into unconventional superconductivity

Signatures for a novel electronic phase that enables charge to flow spontaneously in loops have been observed in a kagome superconductor. The findings are published today in Nature.

Weiterlesen
Meseguer et al

Coexistence of structural and magnetic phases in van der Waals magnet CrI3

CrI3 has raised as an important system to the emergent field of two-dimensional van der Waals magnetic materials. However, it is still unclear why CrI3 which has a ferromagnetic rhombohedral structure in bulk, changed to anti-ferromagnetic monoclinic at thin layers. Here we show that this behaviour is due to the coexistence of both monoclinic and rhombohedral crystal phases followed by three magnetic transitions at TC1 = 61 K, TC2 = 50 K and TC3 = 25 K.

 

Weiterlesen
Jiang et al

Unconventional chiral charge order in kagome superconductor KV3Sb5

Intertwining quantum order and non-trivial topology is at the frontier of condensed matter physics. A charge- density-wave-like order with orbital currents has been pro- posed for achieving the quantum anomalous Hall effect in topological materials and for the hidden phase in cuprate high-temperature superconductors. However, the experimental realization of such an order is challenging. Here we use high-resolution scanning tunnelling microscopy to discover an unconventional chiral charge order in a kagome material, KV3Sb5, with both a topological band structure and a superconducting ground state.

 

Weiterlesen
Guguchia et al

Multiple quantum phase transitions of different nature in the topological kagome magnet Co3Sn2−xInxS2

The exploration of topological electronic phases that result from strong electronic correlations is a frontier in condensed matter physics. One class of systems that is currently emerging as a platform for such studies are so-called kagome magnets based on transition metals. Using muon spin-rotation, we explore magnetic correlations in the kagome magnet Co3Sn2−xInxS2 as a function of In-doping, providing putative evidence for an intriguing incommensurate helimagnetic (HM) state. Our results show that, while the undoped sample exhibits an out-of-plane ferromagnetic (FM) ground state, at 5% of In-doping the system enters a state in which FM and in-plane antiferromagnetic (AFM) phases coexist.

 

Weiterlesen
Guguchia_PRL

Using Uniaxial Stress to Probe the Relationship between Competing Superconducting States in a Cuprate with Spin-stripe Order

We report muon spin rotation and magnetic susceptibility experiments on in-plane stress effects on the static spin-stripe order and superconductivity in the cuprate system La2−xBaxCuO4 with x = 0.115. An extremely low uniaxial stress of ∼0.1 GPa induces a substantial decrease in the magnetic volume fraction and a dramatic rise in the onset of 3D superconductivity, from ∼10 to 32 K.

Weiterlesen
A quantum magnet with a topological twist

A quantum magnet with a topological twist

Theories predict that some electrons in the kagome materials have exotic, so-called topological behaviors and others behave somewhat like graphene, another material prized for its potential for new types of electronics. 

Weiterlesen