Show filters
Les gaines de crayons combustibles et leurs propriétés
Johannes Bertsch travaille au PSI dans la division de recherche Energie nucléaire et sûreté, où il étudie les gaines qui enrobent le combustible exploité dans les centrales nucléaires.
Horizon 2020 project SAMOSAFER granted
The EU Horizon 2020 program granted 3.5 million Euros to the research and innovation project SAMOSAFER, where PSI is one of the 14 project partners. The total budget of the project, inclusive own and in-kind contributions, is 4.5 million Euros. The aim of SAMOSAFER project is to develop and demonstrate new safety barriers and a more controlled behaviour in severe accidents of the Molten Salt Reactor (MSR). Three groups at PSI will be involved in the project: the LSM groups for Advanced Nuclear Systems (ANS) and Multiscale Materials Modelling (MMM) and the Severe Accidents Research group (Sacre) of LRT, focusing on redistribution of the source term in the fuel treatment unit of MSR and assessment and reduction of radionuclide mobility during accidental conditions.
Progress in non intrusive laser based measurements of gas-phase thermoscalars and supporting modeling near catalytically reacting interfaces
Heterogeneous and combined hetero/homogeneous chemical processes have attracted increased attention in many energy conversion systems, which include large scale power generation, microreactors for portable power generation, household burners, fuel processing technologies and automotive exhaust gas aftertreatment. Progress in such systems crucially depends on the development of catalysts with enhanced activity and thermal stability and on the comprehensive understanding of the fundamental processes occurring near gas solid reacting interfaces.
Molten Salt Reactor research at LSM/NES
MSR research at LSM has 3 main justifications:
1. education purpose (2 PhD & 8 MSc internal students, 3 PhD & 4 other guests)
2. technology monitoring (it is the most revolutionary GIV system)
3. novel research topics (liquid phase of the fuel introduces many challenges)
Two major research objectives in NES:
1. safety: evaluate system behavior in nominal and transient conditions (tight multi‐physics coupling / H2020 SAMOFAR project)
2. sustainability: evaluate if the concept can use legacy nuclear waste as initial fuel, insure a high resource utilization (high burning)
Consistent criticality and radiation studies of Swiss spent nuclear fuel: The CS2M approach
Spent fuel management is becoming one of the major concerns in many countries with a nuclear program. The radiation aspect as well as the safe and economical part of the long-term storage of the spent nuclear fuel has to be evaluated with a high degree of confidence. To assist such project from the neutronic simulation side, a new method is proposed to systematically calculate at the same time canister loading curves and radiation sources, based on the inventory information from an in-core fuel management system.
Un matériau produit au PSI permet de mettre à l'épreuve certaines irrégularités de la théorie du Big Bang
Le Big Bang a été immédiatement suivi de l'apparition d'atomes de type béryllium 7. Dans tout l'univers, la plupart de ces atomes se sont désintégrés depuis belle lurette. Un échantillon de béryllium 7, produit artificiellement au PSI, vient d'aider les chercheurs à mieux comprendre les premières minutes de l'univers.
Collective magnetism in an artificial 2D XY spin system
Two-dimensional magnetic systems with continuous spin degrees of freedom exhibit a rich spectrum of thermal behaviour due to the strong competition between fluctuations and correlations. When such systems incorporate coupling via the anisotropic dipolar interaction, a discrete symmetry emerges, which can be spontaneously broken leading to a low-temperature ordered phase.
Nuclear data for nuclear installations: Radiochemistry improves the precision of the cross-section data of long-lived radionuclides
Knowledge about the cross sections data of the target materials used for spallation neutron facilities (SNF) and accelerator driven systems (ADS) is essential for the licensing, safe operation and decommissioning of these facilities. In addition, these data are important to evaluate and improve the existing computer simulation codes. Especially the α-emitter 148Gd has a large contribution to radio-toxicity of spallation target facilities with its 74.6 years of half-life.
ETH Medal for outstanding MSc thesis
The characteristics of low energy electrons accelerated by a laser wakefield (Laser Wakefield Acceleration LWFA) has been studied. The work included understanding the acceleration process, setting up the experiment and measuring properties like charge, divergence and energy of the accelerated electrons. The experiment included diagnostics for the laser and the electrons. In order to make high-resolution energy distribution measurements with relative errors ∆E/E of below 10%, a tunable electron spectrometer has been designed, built and characterized. A tunable permanent magnet quadrupole triplet has been designed for stigmatic focusing in a range of 5 keV to 5 MeV.
Global Sensitivity Analysis and Registration Strategy for Temperature Profiles of Reflood Experiment Simulations
Global sensitivity analysis (GSA) is routinely applied in engineering to determine the sensitivity of a simulation output to the input parameters. Typically, GSA methods require the code output to be a scalar. In the context of thermal-hydraulic system code, however, simulation outputs are often not scalar but time-dependent (e.g. temperature profile). How to perform GSA on these outputs?
BSAF-2: Analysis of Unit 3 accident and fission product transport
The Accident at the Fukushima Daiichi Nuclear Power Station, which occurred in March 2011, had a very strong impact on the nuclear community. Three reactors suffered core damage and fission products were released to the environment. Paul Scherrer Institute (PSI) has participated in an Organisation for Economic Cooperation and Development (OECD) project, Benchmark Study of the Accident at the Fukushima (BSAF). The project aimed to evaluate and analyse the accident progression, likely end-state of the reactor core after the accidents, and the release of radioactivity to the environment. PSI has concentrated on the analysis of unit 3 using MELCOR 2.1. Hundreds of calculations have been performed and a plausible scenario which predicted remarkably well the main signatures has been selected.
Neutron radiography of detrimental hydrogen in nuclear fuel claddings
Hydrogen is at the source of degradation mechanisms affecting mechanical properties of many structural metal materials. In nuclear power plants, zirconium alloy fuel cladding tubes take up a part of the hydrogen from coolant water due to oxidation. Because of the high mobility of hydrogen interstitial atoms down temperature and concentration gradients and up stress gradients, hydrogen distribution in fuel claddings can often be non-uniform, arising the risk for the integrity of spent fuel rods under mechanical load. At the Laboratory of Nuclear Materials (LNM) in collaboration with the Laboratory of Neutron Scattering and Imaging (LNS), hydrogen redistribution in zirconium alloys was quantified by neutron radiography using the state-of-the-art detector of PSI Neutron Microscope, and the concentration was computed based on thermodynamics, to predict hydrogen diffusion and precipitation for used nuclear fuel.
Das Verhalten von UO₂-Brennstoff bei sehr hohem Abbrand
Die Untersuchung von Kernbrennstoff bei sehr hohem Abbrand ist entscheidend für die Bewertung der Sicherheitsmarge des untersuchten Brennstoffs sowohl unter normalen als auch unter Unfallbedingungen. Das PSI ist eines der wenigen heißen Labore, die Zugang zu bestrahltem UO₂-Brennstoff mit sehr hohem Abbrand aus kommerziellen Reaktoren haben. Der Einsatz relevanter Werkzeuge zur Untersuchung, Handhabung und Analyse dieser hoch bestrahlten Materialien unterstreicht die erforderliche Expertise.
Neuer fokussierter Ionenstrahl (FIB) im Hotlabor
Die Implementierung von fokussierten Ionenstrahl-(FIB)-Instrumenten in Materialforschungslaboren im letzten Jahrzehnt hat nicht nur die Präparation sehr dünner Proben für das Transmissionselektronenmikroskop (TEM), insbesondere an Grenzflächen, erheblich verbessert, sondern auch zur Entwicklung neuer Analysemethoden direkt im Instrument selbst geführt. Es hat sich zu einem leistungsstarken Instrument für die Analyse hochradioaktiver Materialien entwickelt, da es die Herstellung und Untersuchung sehr kleiner Proben ermöglicht, die anschließend mit hochsensiblen Detektoren analysiert werden können, ohne dass es zu starken Störungen durch das Strahlungsfeld der Probe selbst kommt.
Signal Noise Analysis in Nuclear Reactors: when the disturbing role of noise becomes valuable
Noise appears in many areas of science, and commonly has an unwanted and disturbing nature by deteriorating signals’ quality. Therefore, various techniques have been developed over the years for separating noise from pure signals. However, noise has a key role in signal analysis of nuclear reactors as its’ appropriate assessment can be used not only for exploring the normal and dynamic behaviour of nuclear cores, but also for identifying and detecting possible anomalies of reactor systems. State of the art methods have been recently implemented within the well-established signal analysis methodology of the STARS program, at the Laboratory for Reactor Physics and Thermal-Hydraulics (LRT), for investigating nuclear reactor noise and getting a better insight on analysing reactors’ operation.
Pt nanoparticles: The key to improved stress corrosion cracking mitigation in boiling water reactors
The formation and growth of cracks by stress corrosion cracking (SCC)in reactor internals and recirculation pipes due to the highly oxidising environment is a serious issue in boiling water reactors. At first, SCC mitigation was attempted by injecting H2 into the feed water, where the injected H2 recombines with the H2O2 and O2 to water and reduces the electrochemical corrosion potential, and consequently the SCC susceptibility. Several disadvantages of the injection of high amounts of H2, have led to the development of noble metal additions to the reactor feed water. With injection of a much smaller amount of H2, the noble metal particles of a few nanometres in size, formed in-situ, work as catalysts for the efficient reduction of the oxidizing species formed by radiolysis, and thus lower the ECP and SCC susceptibility.
Sorption of trivalent lanthanides and actinides onto montmorillonite
The credibility of long-term safety assessments of radioactive waste repositories may be greatly enhanced by a molecular level understanding of the sorption processes onto individual minerals present in the near- and far-fields. A study conducted at LES in collaboration with the Helmholtz Zentrum Dresden Rossendorf used extended X-ray absorption fine structure (EXAFS) and time-resolved laser fluorescence spectroscopies (TRLFS) to elucidate the uptake mechanism of trivalent lanthanides and actinides (Ln/AnIII) by the clay mineral montmorillonite.The excellent agreement between the thermodynamic model parameters obtained by fitting the macroscopic data, and the spectroscopically identified mechanisms, demonstrates the mature state of the 2SPNE SC/CE sorption model developed at LES for predicting and quantifying the retention of Ln/AnIII elements by montmorillonite-rich clay rocks.
BKW and PSI agree on partnership for safety analysis services
BKW’s Engineering Division and the Paul Scherrer Institute (PSI) joined forces to provide risk and safety analysis services in the nuclear sector. By combining their expertise, the two companies are able to solve highly complex problems in the field of nuclear safety. The range of joint services is aimed at customers from the power plant sector and supply industry, as well as public and state institutions. The collaboration will focus exclusively on the international (non-Swiss) market.
Quelles sont les différentes sources d’électricité potentielles pour la Suisse à l’horizon 2050?
Le Laboratoire d’analyses des systèmes énergétiques de l’Institut Paul Scherrer PSI examine à quoi pourrait ressembler l’approvisionnement en électricité de la Suisse d’ici 2050 sous différentes conditions. Sur base de leurs calculs, les chercheurs du laboratoire peuvent se prononcer sur de futurs développements et déterminer, par exemple, par quels biais atteindre les objectifs ambitieux de réduction d’émissions de CO2, moyennant des coûts aussi bas que possible.
The Dynamics of Nuclear Reactors
Nuclear reactor dynamics deals with the transient behaviour of nuclear reactors which mostly refers to time changes of the imbalance between heat production and removal. Since the prediction of the dynamic behaviour is crucial for the safety of a reactor, computational models and methodologies have been developed in the framework of the STARS project, at the Laboratory for Reactor Physics and Thermal-Hydraulics (LRT), with the main goal to simulate the complex behaviours of reactors under various conditions with a high level of fidelity.
Simulations pour des centrales plus efficaces
Pour produire de l’électricité, le plus souvent, on chauffe de l’eau et on la transforme en vapeur. Les bulles de vapeur qui se forment alors dans l’eau jouent un rôle décisif. Des chercheurs de l’Institut Paul Scherrer ont réussi à simuler à l’ordinateur le comportement de ces bulles et à rendre ce dernier plus prévisible.
Radioactive targets produced at PSI enable improving the Big Bang Theory
One of the long-lasting unsolved problems in Nuclear Astrophysics is the so-called "Cosmological Li Problem", i.e. the large discrepancy between the primordial 7Li abundance predicted by models of Big Bang Nucleosynthesis and the one inferred from astronomical observation. The study of the production/destruction rates of the radioactive precursor 7Be is one of the clues for solving this problem.
Réacteurs à sels fondus: exploration d’une possibilité
À l’Institut Paul Scherrer PSI, un petit groupe de scientifiques se penche au moyen de modèles théoriques sur un modèle possible de réacteur nucléaire du futur: les réacteurs dits à sels fondus. Cette recherche contribue à assurer la place de l’expertise de la Suisse dans les questions globales, actuelles et à venir, dans le domaine de l’énergie nucléaire et de la sûreté des réacteurs.
Infrared imaging sheds new light on the condensation/evaporation process
Researcher at PSI (NES/LRT) have brought modern infrared technologies into their large thermal-hydraulic facility, called LINX, to obtain insights into condensation/evaporation process occurring under thermodynamic conditions resembling those of a nuclear power plant containment during a severe accident scenario. In such a scenario, condensation is of prime importance to control the thermodynamic state of the containment. It affects the pressure history, the overall gas (steam, hydrogen) and fission product distribution within this last barrier. Better understanding of these phenomena under accident conditions is essential to properly predict the accident evolution.
The chemical state of 79Se in spent nuclear fuel
An interdisciplinary study conducted at different PSI laboratories (LES, AHL, LRS, SYN) in collaboration with Studsvik AB (Sweden) demonstrates that selenium originating from fission in light water reactors is tightly bound in the crystal lattice of UO2. This finding has positive consequences for the safety assessment of high-level radioactive waste repository planned in Switzerland, as it implies (contrary to previous assumptions) that the safety-relevant radionuclide 79Se will be released at extremely low rates during aqueous corrosion of the waste in a deep-seated repository.
Nucléide spécialement conçu pour des applications médicales
Des chercheurs au PSI ont réussi pour la première fois à produire dans un cyclotron un radionucléide appelé scandium 44 en quantité et en concentration suffisantes. Ils ont ainsi créé les premières conditions pour une utilisation ultérieure du scandium 44 dans le cadre d’investigations médicales dans les cliniques.
Un atome à la fois
Le groupe de recherche Eléments superlourds étudie au PSI les atomes instables et exotiques, situés à la fin du tableau périodique des éléments. Leur rêve: découvrir un jour sur la carte des chimistes un îlot de stabilité, qui pourrait exister au-delà des éléments connus à ce jour.
Désaffectation du réacteur de recherche Proteus
Début de l’enquête publique relative à la désaffectation de l’installation nucléaire Proteus à l’Institut Paul Scherrer PSIL’installation nucléaire Proteus est ce qu’on appelle un réacteur de puissance nulle. La puissance thermique du réacteur était limitée en fonctionnement à 1 kW maximum. Ceci signifie qu’il s’agit d’un réacteur d’essai qui était exploité à une puissance tellement faible qu’un liquide de refroidissement n'était pas nécessaire. Proteus a été mis en service en 1968. Le PSI souhaite désaffecter l’installation. Le projet de désaffectation est dès aujourd’hui communiqué au public dans les organes de publication officiels prévus par la loi.
L'installation de recherche du Laboratoire chaud
Démarrage de l'enquête publique relative à une actualisation de l'autorisation d'exploitation de l'installation de recherche du Laboratoire chaud de l’Institut Paul Scherrer PSILe Laboratoire chaud de l’Institut Paul Scherrer PSI est une installation au sein de laquelle des chercheurs et chercheuses étudient les matériaux hautement radioactifs dans des enceintes blindées spéciales, également baptisées cellules chaudes. Cette installation est unique en Suisse. Elle sert la recherche appliquée sur les matériaux en analysant des échantillons hautement radioactifs de barreaux de combustibles et de matériaux de structure provenant de centrales nucléaires, de réacteurs de recherche et de l'accélérateur de proton du PSI. Grâce aux travaux du Laboratoire chaud, l’Institut Paul Scherrer contribue ainsi à la sécurité des centrales nucléaires suisses. Près de 32 salariés travaillent au sein de l'infrastructure spécialisée dans les techniques de sécurité et d'analyses du Laboratoire chaud.
Kohlendioxid: Das Klimaproblem im Untergrund entsorgen?
Allen Warnungen vor den Folgen des Klimawandels zum Trotz und unbeeindruckt von politischen Absichtserklärungen: Die weltweiten Kohlendioxidemissionen steigen und steigen. Hauptverantwortlich dafür sind Kohle- und Gaskraftwerke, die den zunehmenden Strombedarf decken. Könnte man deren Kohlendioxidemissionen dauerhaft im Boden speichern, anstatt damit Atmosphäre und Klima zu belasten? Und wäre das auch für die Schweiz interessant? Diese Fragen beleuchtet der neueste Energie-Spiegel des PSI.Cette actualité n'existe qu'en allemand.