Auf dem Weg zu intelligenten Mikrorobotern

Forschende des Paul Scherrer Instituts PSI und der ETH Zürich haben eine Mikromaschine entwickelt, die unterschiedliche Aktionen ausführen kann. Dafür werden zuerst Nanomagnete in Bauteilen des Mikroroboters magnetisch programmiert und die verschiedenen Bewegungen dann durch Magnetfelder gesteuert. Solche nur wenige Mikrometer messende Maschinen könnten beispielsweise im menschlichen Körper eingesetzt werden, um kleine Operationen durchzuführen. Ihre Ergebnisse veröffentlichen die Forschenden nun im Wissenschaftsmagazin Nature.

Laura Heyderman (links) und Tian-Yun Huang (Mitte) betrachten ein Modell des Origami-Vogels, während Jizhai Cui den echten Mikroroboter unter einem Mikroskop beobachtet. Was er dort sehen kann, zeigt das Video, das die Forschenden gemacht haben. © Paul Scherrer Institut PSI/Mahir Dzambegovic

Der nur wenige Mikrometer messende Roboter erinnert an einen mithilfe der japanischen Faltkunst hergestellten Papiervogel. Doch anders als ein Papiergebilde bewegt sich der Roboter wie von Geisterhand, ohne dass eine sichtbare Kraft auf ihn einwirkt. Er schlägt mit den Flügeln oder krümmt seinen Hals und zieht seinen Kopf ein. Möglich sind diese Aktionen durch Magnetismus.

Forschende des Paul Scherrer Instituts PSI und der ETH Zürich haben die Mikromaschine unter anderem aus Materialien zusammengesetzt, die kleine Nanomagnete enthalten. Diese Nanomagnete können so programmiert werden, dass sie eine bestimmte magnetische Ausrichtung annehmen. Wenn die programmierten Nanomagnete dann einem Magnetfeld ausgesetzt werden, wirken spezifische Kräfte auf sie. Befinden sich diese Magnete in flexiblen Bauteilen, dann führen die auf sie wirkenden Kräfte zu einer Bewegung.

Die rasterelektronenmikroskopische Aufnahme zeigt das vogelartige Konstrukt mit Anordnungen von nanoskaligen Magneten. Die Magnete können in verschiedenen Ausrichtungen parallel zu den Farbbalken magnetisiert werden. Je nach ihrer Magnetisierung kann der Vogel verschiedene Bewegungen in einem Magnetfeld ausführen. Zum Grössenvergleich: Der weisse Balken misst 15 Mikrometer. © Paul Scherrer Institut PSI/Eidgenössische Technische Hochschule Zürich
Das Video zeigt die Bewegungen des nur wenige Mikrometer messenden Mikroroboters in Gestalt eines Vogels. Die Zeichnung links oben verdeutlicht mit unterschiedlichen Farben, dass die Nanomagnete jedes einzelnen Bauteils unterschiedlich magnetisiert werden können. Darunter sieht man, wie jedes einzeln Bauteil unterschiedlich magnetisiert wird (rote Pfeile). Dass die daraus resultierenden und zu erwartenden Bewegungen (rechts oben) tatsächlich stattfinden, zeigt das Video (rechts unten). © Paul Scherrer Institut PSI/Eidgenössische Technische Hochschule Zürich

Nanomagnete programmieren

Die Nanomagnete lassen sich immer wieder neu programmieren. Das führt zu jeweils unterschiedlichen Kräften, die auf die Konstruktion wirken, und neuen Bewegungen.  

Für den Bau des Mikroroboters platzierten die Forschenden Reihen von Kobaltmagneten auf dünnen Schichten von Siliziumnitrid. Der «Vogel» aus diesem Material konnte verschiedene Bewegungen ausführen, beispielsweise flattern, rütteln, sich umdrehen oder zur Seite gleiten.

«Diese Bewegungen des Mikroroboters spielen sich im Bereich von Millisekunden ab», sagt Laura Heyderman, Leiterin des Labors für Multiskalen Materialien Experimente am PSI und Professorin an der ETH Zürich. «Das Programmieren der Nanomagnete geschieht dagegen innerhalb weniger Nanosekunden.» Das ermöglicht, unterschiedliche Bewegungen zu programmieren. Bezogen auf das Modell des Mikrovogels bedeutet das, dass man ihn beispielsweise zunächst flattern, anschliessend zur Seite gleiten und dann wieder flattern lassen kann. «Wenn nötig, könnte man ihn dazwischen auch mal rütteln lassen», sagt Heyderman.

Intelligente Mikroroboter

Dieses neuartige Konzept ist ein wichtiger Schritt auf dem Weg zu Mikro- und Nanorobotern, die nicht nur Informationen für eine einzelne bestimmte Aktion speichern, sondern immer wieder neu programmiert werden können, um verschiedene Aufgaben zu erfüllen. «Es ist vorstellbar, dass in der Zukunft eine autonome Mikromaschine durch menschliche Blutgefässe navigiert und biomedizinische Aufgaben wie das Abtöten von Krebszellen übernimmt», erklärt Bradley Nelson, Leiter des Departments Maschinenbau und Verfahrenstechnik der ETH Zürich.

«Andere Einsatzgebiete sind denkbar, zum Beispiel flexible Mikroelektronik oder Mikrolinsen, die ihre optischen Eigenschaften verändern», sagt Tian-Yun Huang, Forscher am Institut für Robotik und Intelligente Systeme der ETH Zürich.

Darüber hinaus sind Anwendungen möglich, bei denen sich die Eigenarten von Oberflächen verändern. «Beispielsweise könnten damit Oberflächen geschaffen werden, die je nach Bedarf entweder von Wasser benetzt werden oder Wasser abweisen», sagt Jizhai Cui, Ingenieur und Forscher im Labor für Mesoskopische Systeme von Laura Heyderman am PSI.

Ihre Ergebnisse veröffentlichen die Forschenden nun im Wissenschaftsmagazin Nature.

Prof. Dr. Laura Heyderman
Labor für Mesoskopische Systeme
Paul Scherrer Institut PSI

+41 56 310 26 13
laura.heyderman@psi.ch 
[Englisch, Deutsch, Französisch]

Prof. Dr. Bradley J. Nelson
Multi-Scale Robotics Lab
Institut für Robotik und Intelligente Systeme 
ETH Zürich, 8093 Zürich, Schweiz

+41 44 632 55 29
bnelson@ethz.ch 
[Englisch]

Dr. Jizhai Cui
Labor für Mesoskopische Systeme
Paul Scherrer Institut PSI

+41 56 310 34 33
jizhai.cui@psi.ch 
[Englisch, Chinesisch]

Dr. Tian-Yun Huang
Multi-Scale Robotics Lab
Institut für Robotik und Intelligente Systeme 
ETH Zürich, 8093 Zürich, Schweiz

+41 44 632 02 96
huangt@ethz.ch 
[Englisch, Chinesisch]

Informazioni sul PSI

L'Istituto Paul Scherrer PSI sviluppa, costruisce e gestisce grandi e complesse strutture di ricerca e le mette a disposizione della comunità di ricerca nazionale e internazionale. La sua ricerca si concentra sulle tecnologie del futuro, l'energia e il clima, l'innovazione sanitaria e i fondamenti della natura. La formazione dei giovani è una preoccupazione centrale del PSI. Per questo motivo, circa un quarto dei nostri dipendenti sono ricercatori post-dottorato, dottorandi o apprendisti. Il PSI impiega un totale di 2.300 persone, il che lo rende il più grande istituto di ricerca della Svizzera. Il budget annuale è di circa 450 milioni di franchi svizzeri. Il PSI fa parte del settore dei PF, che comprende anche il Politecnico di Zurigo e l'EPF di Losanna, nonché gli istituti di ricerca Eawag, Empa e WSL. (al 06/2025)