Aller au contenu principal
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Rechercher
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOuvrir ce point de menu principal
    • Research Initiatives
    • Ethics and Research integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOuvrir ce point de menu principal
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Scientific Computing, Theory and Data
    • Large Research Facilities
    • Logistics
  • Facilities and InstrumentsOuvrir ce point de menu principal
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOuvrir ce point de menu principal
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • New ProjectsOuvrir ce point de menu principal
    • SLS 2.0
    • IMPACT
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

Vous êtes ici:

  1. PSI Home
  2. Labs & User Services
  3. NES
  4. LEA
  5. Technology Assessment
  6. Methods
  7. Risk Assessment
  8. Bayesian Approaches

Navigation secondaire

Technology Assessment

  • Research Areas
    • Life Cycle Assessment
    • Environmental Impacts Assessment
    • Internal Cost Analysis
    • Risk Assessment
    • Mobility
    • Decision Support
  • Methods Sous-menu élargi
    • Life Cycle Assessment (LCA)
      • Global Sensitivity Analysis in LCA
      • Prospective LCA
    • Environmental Impact and External Cost Assessment
    • Risk Assessment Sous-menu élargi
      • Accident Risk Assessment
      • Bayesian Approaches
      • Risk Assessment for Critical Infrastructures
    • Decision Support
      • Composite Indicators
      • Interacting criteria
      • spatial MCDA
  • People
    • Former Group Members
  • Projects
    • Closed Projects
  • Publications
    • Preprint Journal Articles
    • Journals and Books
    • Reports and Working Papers
  • Theses and Internships
  • Conference
  • Tools
  • News & Scientific Highlights

Info message

Ce contenu n'est pas disponible en français.

Bayesian Approaches

The most common approach to analyze the risk of accidents in the energy sector relies on quantitative measures such as aggregated risk indicators (e.g., fatality rates), allowing to compare energy chains in comprehensive manner. In this context, the calculation of objective risk indicators comprises a valuable element to support decision makers in the assessment of current and future technology portfolios. Hence, there is a clear need for more and better data, and accordingly, improved uncertainty quantification for accident risk indicators, because they are the basis to support decision-makers and risk managers in their efforts to design and implement better risk management strategies, including both preventive measures (pre-event) and mitigation processes (post-event).

For risk assessment of accidents in the energy sector, only recently activities related to the treatment of uncertainties in a consistent way have been developed. Within the PSI activities on the assessment of risk indicators and their uncertainty, Bayesian inference has been demonstrated to be useful, since uncertainty is intrinsically assessed through it. In fact, a Bayesian analysis is a fully probabilistic approach that accounts for both epistemic and aleatory uncertainties. The Bayesian Theorem can be written as follow:

p(θ│y)∝L(y; θ)p(θ)

The posterior distribution p(θ│y) in a Bayesian analysis is given by the product of:

  • a priori distribution p(θ), which describes what is known about the parameter of interest before observing any data, i.e., it contributes to the epistemic uncertainty, since it intrinsically describes the lack of knowledge on the parameter of interest;
  • a likelihood function L(y; θ), which describes the process-giving rise to data in terms of the unknown parameter of interest, i.e., it contributes to the random variability of the parameter of interest, and thus describes the aleatory uncertainty.

Furthermore, Bayesian analysis can be extended to, among others:

  • model distributions in a robust way for subsets with scarce data (Bayesian Hierarchical Model);
  • for quantile regression to assess the indicators representing extreme risk;
  • for trend analysis;
  • model distributions for tiny datasets, i.e., very small datasets (Approximate Bayesian Computation, ABC).

A selection of references on the topic are shown below, while other publications can be found here.

Selected References

Kalinina, A., Spada, M., Burgherr, P., 2020. Probabilistic Analysis of Dam Accidents Worldwide: Risk Assessment for Dams of Different Purposes in OECD and Non‐OECD Countries with Focus on Time Trend Analysis. Risk Analysis. http://dx.doi.org/10.1111/risa.13536

Spada, M., Burgherr, P., 2020. Comparative Risk Assessment for Fossil Energy Chains Using Bayesian Model Averaging. Energies 13(2). http://dx.doi.org/10.3390/en13020295

Spada, M., Burgherr, P., 2019. A Hierarchical Approximate Bayesian Computation (HABC) for Accident Risk in the Energy Sector triggered by Natural Events, in: Beer, M., Zio, E. (Eds.), 29th European Safety and Reliability Conference. Research Publishing, Hannover, Germany, pp. 1423-1430. http://dx.doi.org/10.3850/978-981-11-2724-3_0758-cd

Kalinina, A., Spada, M., Burgherr, P., 2018. Application of a Bayesian hierarchical modeling for risk assessment of accidents at hydropower dams. Safety Science 110, 164-177. http://dx.doi.org/10.1016/j.ssci.2018.08.006

Spada, M., Burgherr, P., 2016. An aftermath analysis of the 2014 coal mine accident in Soma, Turkey: Use of risk performance indicators based on historical experience. Accident Analysis & Prevention 87, 134-140. http://dx.doi.org/10.1016/j.aap.2015.11.020

Sidebar

Contact Persons

Dr. Peter Burgherr
Telehone: +41 56 310 2649
E-mail: peter.burgherr@psi.ch

Dr. Matteo Spada
Telephone: +41 56 310 5690
E-mail: matteo.spada@psi.ch
 

top

Pied de page

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Suisse

Téléphone: +41 56 310 21 11
Téléfax: +41 56 310 21 99

Comment nous trouver 
Contact

Centre de visiteurs psi forum
Laboratoire élèves iLab (en allemand)
Centre de protonthérapie
Centre de Formation du PSI
PSI Guest House (en anglais)
PSI Gastronomie (en allemand)
psi forum shop

Service & Support

  • Annuaire
  • User Office
  • Accelerator Status
  • Publications du PSI
  • Fournisseurs
  • E-facture
  • Computing (en anglais)
  • Sicherheit (en allemand)

Carrière

  • Travailler au PSI
  • Offres d'emploi
  • Formation initiale et formation continue
  • Career Center
  • Formation professionnelle (en allemand)
  • Centre de Formation du PSI

Pour les médias

  • Le PSI en bref
  • Chiffres et faits
  • Le coin médias
  • Communiqués de presse
  • Réseaux sociaux

Suivez le PSI: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Impressum
  • Conditions d'utilisation
  • Login éditeurs