Aerosol and Health

Haze in Beijing. Photo credit: Lubna Dada

The vision of the Aerosols and Health Group is to better understand the effect of air pollution on people's health and what role anthropogenic and natural emissions play now and in the future. While there are clear links between aerosol exposure and increased mortality and morbidity risk, little is known about how the properties of aerosols affect their toxicity and which emission sources are most important for human health.

Our mission is to quantify the aerosol sources and identify those most harmful to human health. To that end, we analyze aerosol archives with mass spectrometry and data mining techniques to identify aerosol sources around the world. Furthermore, we are interested in determining the role of particle sources, and thus their chemical and physical properties, in the harmfulness of particles to human health, both through emerging chemical metrics and on a population level. Moreover, we simulate air quality using our in-house model to describe the types of aerosols to which the population is exposed today and in a future shaped by emission reductions.

  • Bhattu D, Tripathi SN, Bhowmik HS, Moschos V, Lee CP, Rauber M, et al.
    Local incomplete combustion emissions define the PM2.5 oxidative potential in Northern India
    Nature Communications. 2024; 15(1): 3517 (13 pp.). https://doi.org/10.1038/s41467-024-47785-5
    DORA PSI
  • Cheung RKY, Qi L, Manousakas MI, Puthussery JV, Zheng Y, Koenig TK, et al.
    Major source categories of PM2.5 oxidative potential in wintertime Beijing and surroundings based on online dithiothreitol-based field measurements
    Science of the Total Environment. 2024; 928: 172345 (14 pp.). https://doi.org/10.1016/j.scitotenv.2024.172345
    DORA PSI
  • Cui T, Manousakas MI, Wang Q, Uzu G, Hao Y, Khare P, et al.
    Composition and sources of organic aerosol in two megacities in Western China using complementary mass spectrometric and statistical techniques
    ACS ES&T Air. 2024; 1(9): 1053-1065. https://doi.org/10.1021/acsestair.4c00051
    DORA PSI
  • Daellenbach KR, Cai J, Hakala S, Dada L, Yan C, Du W, et al.
    Substantial contribution of transported emissions to organic aerosol in Beijing
    Nature Geoscience. 2024; 17(8): 747-754. https://doi.org/10.1038/s41561-024-01493-3
    DORA PSI
  • El Haddad I, Vienneau D, Daellenbach KR, Modini R, Slowik JG, Upadhyay A, et al.
    Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
    Atmospheric Chemistry and Physics. 2024; 24(20): 11981-12011. https://doi.org/10.5194/acp-24-11981-2024
    DORA PSI
  • Graham AM, Pope RJ, Chipperfield MP, Dhomse SS, Pimlott M, Feng W, et al.
    Quantifying effects of long-range transport of NO2 over Delhi using back trajectories and satellite data
    Atmospheric Chemistry and Physics. 2024; 24(2): 789-806. https://doi.org/10.5194/acp-24-789-2024
    DORA PSI
  • Hobbie EA, Keel SG, Klein T, Rog I, Saurer M, Siegwolf R, et al.
    Tracing the spatial extent and lag time of carbon transfer from Picea abies to ectomycorrhizal fungi differing in host type, taxonomy, or hyphal development
    Fungal Ecology. 2024; 68: 101315 (8 pp.). https://doi.org/10.1016/j.funeco.2023.101315
    DORA PSI
  • Hobbie EA, Siegwolf R, Körner C, Steinmann K, Wilhelm M, Saurer M, et al.
    Weather modifies the spatial extent of carbohydrate transfers from CO2-supplied broad-leaved trees to ectomycorrhizal fungi
    Plant and Soil. 2024; 494: 717-730. https://doi.org/10.1007/s11104-023-06314-x
    DORA PSI
  • Li X, Li H, Yao L, Stolzenburg D, Sarnela N, Vettikkat L, et al.
    Over 20 years of observations in the boreal forest reveal a decreasing trend of atmospheric new particle formation
    Boreal Environment Research. 2024; 29(1-6): 35-52.
    DORA PSI
  • Li K, Zhang J, Bell DM, Wang T, Lamkaddam H, Cui T, et al.
    Uncovering the dominant contribution of intermediate volatility compounds in secondary organic aerosol formation from biomass-burning emissions
    National Science Review. 2024; 11(3): nwae014 (9 pp.). https://doi.org/10.1093/nsr/nwae014
    DORA PSI
  • Ren J, Hao Y, Zheng X, Li X, Xie S
    Ozone response to precursors changes in the Chengdu-Chongqing economic circle, China, from satellite and ground-based observations
    Science of the Total Environment. 2024; 953: 176037 (11 pp.). https://doi.org/10.1016/j.scitotenv.2024.176037
    DORA PSI
  • Rusanen A, Björklund A, Manousakas MI, Jiang J, Kulmala MT, Puolamäki K, et al.
    A novel probabilistic source apportionment approach: Bayesian auto-correlated matrix factorization
    Atmospheric Measurement Techniques. 2024; 17(4): 1251-1277. https://doi.org/10.5194/amt-17-1251-2024
    DORA PSI
  • Skiba A, Styszko K, Tobler A, Casotto R, Gorczyca Z, Furman P, et al.
    Source attribution of carbonaceous fraction of particulate matter in the urban atmosphere based on chemical and carbon isotope composition
    Scientific Reports. 2024; 14(1): 7234 (14 pp.). https://doi.org/10.1038/s41598-024-57829-x
    DORA PSI
  • Treydte K, Liu L, Padrón RS, Martínez-Sancho E, Babst F, Frank DC, et al.
    Recent human-induced atmospheric drying across Europe unprecedented in the last 400 years
    Nature Geoscience. 2024; 17: 58-65. https://doi.org/10.1038/s41561-023-01335-8
    DORA PSI
  • Wang T, Li K, Bell DM, Zhang J, Cui T, Surdu M, et al.
    Large contribution of in-cloud production of secondary organic aerosol from biomass burning emissions
    npj Climate and Atmospheric Science. 2024; 7(1): 149 (9 pp.). https://doi.org/10.1038/s41612-024-00682-6
    DORA PSI
  • Zheng F, Li J, Hua C, Xie J, Zhang Y, Li L, et al.
    Dust event identification and characterization with one-year online observations in Beijing
    Science of the Total Environment. 2024; 956: 177296 (14 pp.). https://doi.org/10.1016/j.scitotenv.2024.177296
    DORA PSI
  • Benedetti B, Tronconi A, Turrini F, Di Carro M, Donno D, Beccaro GL, et al.
    Determination of polycyclic aromatic hydrocarbons in bud-derived supplements by magnetic molecular imprinted microparticles and GC-MS: D-optimal design for a fast method optimization
    Scientific Reports. 2023; 13(1): 17544 (11 pp.). https://doi.org/10.1038/s41598-023-44398-8
    DORA PSI
  • Cai J, Daellenbach KR, Wu C, Zheng Y, Zheng F, Du W, et al.
    Characterization of offline analysis of particulate matter with FIGAERO-CIMS
    Atmospheric Measurement Techniques. 2023; 16(5): 1147-1165. https://doi.org/10.5194/amt-16-1147-2023
    DORA PSI
  • Casotto R, Skiba A, Rauber M, Strähl J, Tobler A, Bhattu D, et al.
    Organic aerosol sources in Krakow, Poland, before implementation of a solid fuel residential heating ban
    Science of the Total Environment. 2023; 855: 158655 (12 pp.). https://doi.org/10.1016/j.scitotenv.2022.158655
    DORA PSI
  • Chen Y, Shi Y, Ren J, You G, Zheng X, Liang Y, et al.
    VOC species controlling O3 formation in ambient air and their sources in Kaifeng, China
    Environmental Science and Pollution Research. 2023; 30(32): 75439-75453. https://doi.org/10.1007/s11356-023-27595-w
    DORA PSI
  • Dada L, Stolzenburg D, Simon M, Fischer L, Heinritzi M, Wang M, et al.
    Role of sesquiterpenes in biogenic new particle formation
    Science Advances. 2023; 9(36): eadi5297 (15 pp.). https://doi.org/10.1126/sciadv.adi5297
    DORA PSI
  • Daellenbach KR, Manousakas M, Jiang J, Cui T, Chen Y, El Haddad I, et al.
    Organic aerosol sources in the Milan metropolitan area - receptor modelling based on field observations and air quality modelling
    Atmospheric Environment. 2023; 307: 119799 (10 pp.). https://doi.org/10.1016/j.atmosenv.2023.119799
    DORA PSI
  • De Haan DO, Hawkins LN, Wickremasinghe PD, Andretta AD, Dignum JR, De Haan AC, et al.
    Brown carbon from photo-oxidation of glyoxal and SO2 in aqueous aerosol
    ACS Earth and Space Chemistry. 2023; 7(5): 1131-1140. https://doi.org/10.1021/acsearthspacechem.3c00035
    DORA PSI
  • Fang C, Haywood JM, Liang J, Johnson BT, Chen Y, Zhu B
    Impacts of reducing scattering and absorbing aerosols on the temporal extent and intensity of South Asian summer monsoon and East Asian summer monsoon
    Atmospheric Chemistry and Physics. 2023; 23(14): 8341-8368. https://doi.org/10.5194/acp-23-8341-2023
    DORA PSI
  • Heutte B, Bergner N, Beck I, Angot H, Dada L, Quéléver LLJ, et al.
    Measurements of aerosol microphysical and chemical properties in the central Arctic atmosphere during MOSAiC
    Scientific Data. 2023; 10(1): 690 (16 pp.). https://doi.org/10.1038/s41597-023-02586-1
    DORA PSI
  • Li L, Cao J, Hao Y
    Spatial and species-specific responses of biogenic volatile organic compound (BVOC) emissions to elevated ozone from 2014–2020 in China
    Science of the Total Environment. 2023; 868: 161636 (9 pp.). https://doi.org/10.1016/j.scitotenv.2023.161636
    DORA PSI
  • Mishra S, Tripathi SN, Kanawade VP, Haslett SL, Dada L, Ciarelli G, et al.
    Rapid night-time nanoparticle growth in Delhi driven by biomass-burning emissions
    Nature Geoscience. 2023; 16(3): 224-230. https://doi.org/10.1038/s41561-023-01138-x
    DORA PSI
  • Mogno C, Palmer PI, Marvin MR, Sharma S, Chen Y, Wild O
    Road transport impact on PM2.5 pollution over Delhi during the post-monsoon season
    Atmospheric Environment: X. 2023; 17: 100200 (11 pp.). https://doi.org/10.1016/j.aeaoa.2022.100200
    DORA PSI
  • Siegwolf RTW, Lehmann MM, Goldsmith GR, Churakova OV, Mirande-Ney C, Timoveeva G, et al.
    Updating the dual C and O isotope - gas-exchange model: a concept to understand plant responses to the environment and its implications for tree rings
    Plant, Cell and Environment. 2023; 46(9): 2606-2627. https://doi.org/10.1111/pce.14630
    DORA PSI
  • Wang J, Wang S, Xu X, Li X, He P, Qiao Y, et al.
    The diminishing effects of winter heating on air quality in northern China
    Journal of Environmental Management. 2023; 325: 116536 (12 pp.). https://doi.org/10.1016/j.jenvman.2022.116536
    DORA PSI
  • Zhang J, Li K, Wang T, Gammelsæter E, Cheung RKY, Surdu M, et al.
    Bulk and molecular-level composition of primary organic aerosol from wood, straw, cow dung, and plastic burning
    Atmospheric Chemistry and Physics. 2023; 23(22): 14561-14576. https://doi.org/10.5194/acp-23-14561-2023
    DORA PSI
  • Zhang Y, Tian J, Wang Q, Qi L, Manousakas MI, Han Y, et al.
    High-time-resolution chemical composition and source apportionment of PM2.5 in northern Chinese cities: implications for policy
    Atmospheric Chemistry and Physics. 2023; 23(16): 9455-9471. https://doi.org/10.5194/acp-23-9455-2023
    DORA PSI
  • in 't Veld M, Khare P, Hao Y, Reche C, Pérez N, Alastuey A, et al.
    Characterizing the sources of ambient PM10 organic aerosol in urban and rural Catalonia, Spain
    Science of the Total Environment. 2023; 902: 166440 (13 pp.). https://doi.org/10.1016/j.scitotenv.2023.166440
    DORA PSI
  • Armstrong NC, Chen Y, Cui T, Zhang Y, Christensen C, Zhang Z, et al.
    Isoprene epoxydiol-derived sulfated and nonsulfated oligomers suppress particulate mass loss during oxidative aging of secondary organic aerosol
    Environmental Science and Technology. 2022; 56(23): 16611-16620. https://doi.org/10.1021/acs.est.2c03200
    DORA PSI
  • Benavent N, Mahajan AS, Li Q, Cuevas CA, Schmale J, Angot H, et al.
    Substantial contribution of iodine to Arctic ozone destruction
    Nature Geoscience. 2022; 15: 770-773. https://doi.org/10.1038/s41561-022-01018-w
    DORA PSI
  • Bogler S, Daellenbach KR, Bell DM, Prévôt ASH, El Haddad I, Borduas-Dedekind N
    Singlet oxygen seasonality in aqueous PM10 is driven by biomass burning and anthropogenic secondary organic aerosol
    Environmental Science and Technology. 2022; 56(22): 15389-15397. https://doi.org/10.1021/acs.est.2c04554
    DORA PSI
  • Cai J, Wu C, Wang J, Du W, Zheng F, Hakala S, et al.
    Influence of organic aerosol molecular composition on particle absorptive properties in autumn Beijing
    Atmospheric Chemistry and Physics. 2022; 22(2): 1251-1269. https://doi.org/10.5194/acp-22-1251-2022
    DORA PSI
  • Cao J, Situ S, Hao Y, Xie S, Li L
    Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981-2018 in China
    Atmospheric Chemistry and Physics. 2022; 22(4): 2351-2364. https://doi.org/10.5194/acp-22-2351-2022
    DORA PSI
  • Casotto R, Cvitešić Kušan A, Bhattu D, Cui T, Manousakas MI, Frka S, et al.
    Chemical composition and sources of organic aerosol on the Adriatic coast in Croatia
    Atmospheric Environment: X. 2022; 13: 100159 (14 pp.). https://doi.org/10.1016/j.aeaoa.2022.100159
    DORA PSI
  • Chen Y, Wang Y, Nenes A, Wild O, Song S, Hu D, et al.
    Ammonium chloride associated aerosol liquid water enhances haze in Delhi, India
    Environmental Science and Technology. 2022; 56(11): 7163-7173. https://doi.org/10.1021/acs.est.2c00650
    DORA PSI
  • Chen G, Canonaco F, Tobler A, Aas W, Alastuey A, Allan J, et al.
    European aerosol phenomenology - 8: harmonised source apportionment of organic aerosol using 22 year-long ACSM/AMS datasets
    Environment International. 2022; 166: 107325 (18 pp.). https://doi.org/10.1016/j.envint.2022.107325
    DORA PSI
  • Chen Y, Haywood J, Wang Y, Malavelle F, Jordan G, Partridge D, et al.
    Machine learning reveals climate forcing from aerosols is dominated by increased cloud cover
    Nature Geoscience. 2022; 15: 609-614. https://doi.org/10.1038/s41561-022-00991-6
    DORA PSI
  • Chen G, Canonaco F, Slowik JG, Daellenbach KR, Tobler A, Petit J-E, et al.
    Real-time source apportionment of organic aerosols in three European cities
    Environmental Science and Technology. 2022; 56(22): 15290-15297. https://doi.org/10.1021/acs.est.2c02509
    DORA PSI
  • Dada L, Angot H, Beck I, Baccarini A, Quéléver LLJ, Boyer M, et al.
    A central arctic extreme aerosol event triggered by a warm air-mass intrusion
    Nature Communications. 2022; 13(1): 5290 (15 pp.). https://doi.org/10.1038/s41467-022-32872-2
    DORA PSI
  • Du W, Cai J, Zheng F, Yan C, Zhou Y, Guo Y, et al.
    Influence of aerosol chemical composition on condensation sink efficiency and new particle formation in Beijing
    Environmental Science and Technology Letters. 2022; 9(5): 375-382. https://doi.org/10.1021/acs.estlett.2c00159
    DORA PSI
  • Guo Y, Yan C, Liu Y, Qiao X, Zheng F, Zhang Y, et al.
    Seasonal variation in oxygenated organic molecules in urban Beijing and their contribution to secondary organic aerosol
    Atmospheric Chemistry and Physics. 2022; 22(15): 10077-10097. https://doi.org/10.5194/acp-22-10077-2022
    DORA PSI
  • Hakala S, Vakkari V, Bianchi F, Dada L, Deng C, Dällenbach KR, et al.
    Observed coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in Beijing
    Environmental Science: Atmospheres. 2022; 2(2): 146-164. https://doi.org/10.1039/d1ea00089f
    DORA PSI
  • Karlsson L, Baccarini A, Duplessis P, Baumgardner D, Brooks IM, Chang RY-W, et al.
    Physical and chemical properties of cloud droplet residuals and aerosol particles during the Arctic Ocean 2018 expedition
    Journal of Geophysical Research: Atmospheres. 2022; 127(11): e2021JD036383 (20 pp.). https://doi.org/10.1029/2021JD036383
    DORA PSI
  • Ma J, Ungeheuer F, Zheng F, Du W, Wang Y, Cai J, et al.
    Nontarget screening exhibits a seasonal cycle of PM2.5 organic aerosol composition in Beijing
    Environmental Science and Technology. 2022; 56(11): 7017-7028. https://doi.org/10.1021/acs.est.1c06905
    DORA PSI
  • Manousakas M, Furger M, Daellenbach KR, Canonaco F, Chen G, Tobler A, et al.
    Source identification of the elemental fraction of particulate matter using size segregated, highly time-resolved data and an optimized source apportionment approach
    Atmospheric Environment: X. 2022; 14: 100165 (15 pp.). https://doi.org/10.1016/j.aeaoa.2022.100165
    DORA PSI
  • Moschos V, Dzepina K, Bhattu D, Lamkaddam H, Casotto R, Daellenbach KR, et al.
    Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols
    Nature Geoscience. 2022; 15: 196-202. https://doi.org/10.1038/s41561-021-00891-1
    DORA PSI
  • Nie W, Yan C, Huang DD, Wang Z, Liu Y, Qiao X, et al.
    Secondary organic aerosol formed by condensing anthropogenic vapours over China’s megacities
    Nature Geoscience. 2022; 15: 255-261. https://doi.org/10.1038/s41561-022-00922-5
    DORA PSI
  • Ojha N, Soni M, Kumar M, Gunthe SS, Chen Y, Ansari TU
    Mechanisms and pathways for coordinated control of fine particulate matter and ozone
    Current Pollution Reports. 2022; 8: 594-604. https://doi.org/10.1007/s40726-022-00229-4
    DORA PSI
  • Siegel K, Neuberger A, Karlsson L, Zieger P, Mattsson F, Duplessis P, et al.
    Using novel molecular-level chemical composition observations of high arctic organic aerosol for predictions of cloud condensation nuclei
    Environmental Science and Technology. 2022; 56(19): 13888-13899. https://doi.org/10.1021/acs.est.2c02162
    DORA PSI
  • Via M, Chen G, Canonaco F, Daellenbach KR, Chazeau B, Chebaicheb H, et al.
    Rolling vs. seasonal PMF: real-world multi-site and synthetic dataset comparison
    Atmospheric Measurement Techniques. 2022; 15(18): 5479-5495. https://doi.org/10.5194/amt-15-5479-2022
    DORA PSI
  • Wang Y, Voliotis A, Hu D, Shao Y, Du M, Chen Y, et al.
    On the evolution of sub- and super-saturated water uptake of secondary organic aerosol in chamber experiments from mixed precursors
    Atmospheric Chemistry and Physics. 2022; 22(6): 4149-4166. https://doi.org/10.5194/acp-22-4149-2022
    DORA PSI
  • Yan C, Shen Y, Stolzenburg D, Dada L, Qi X, Hakala S, et al.
    The effect of COVID-19 restrictions on atmospheric new particle formation in Beijing
    Atmospheric Chemistry and Physics. 2022; 22(18): 12207-12220. https://doi.org/10.5194/acp-22-12207-2022
    DORA PSI