Aller au contenu principal
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Rechercher
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOuvrir ce point de menu principal
    • Research Initiatives
    • Ethics and Research integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOuvrir ce point de menu principal
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Scientific Computing, Theory and Data
    • Large Research Facilities
    • Logistics
  • Facilities and InstrumentsOuvrir ce point de menu principal
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOuvrir ce point de menu principal
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • New ProjectsOuvrir ce point de menu principal
    • SLS 2.0
    • IMPACT
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

Vous êtes ici:

  1. PSI Home
  2. Labs & User Services
  3. QTC
  4. Projects
  5. Quantum telecommunication and sensing with Spins in Silicon Carbide

Navigation secondaire

Quantum Technologies Collaboration

  • Projects Sous-menu élargi
    • Non-Destructive Imaging
    • Many-body localisation and hole-burning in random quantum magnets
    • From topology in condensed matter to quantum information and spintronics
    • Topological Quantum States
    • Electronic structure of novel heterostructure systems for quantum electronics
    • Molecular Nanoscience
    • Nonlinear X-ray Spectroscopy
    • Quantum telecommunication and sensing with Spins in Silicon Carbide
  • Facilities
  • People
  • Open positions

Info message

Ce contenu n'est pas disponible en français.

Quantum telecommunication and sensing with Spins in Silicon Carbide

Silicon Carbide is a wide bandgap semiconductor (3.2eV bandgap for the 4H polytype) with several Spin active photon emitters (SPEs) with optical transitions in the near-infrared and coherent electronic spins, including:
  • VCVSi, named di-vacancy: Zero photon lines (ZPL) at 1079nm and 1131nm, lifetime of excited state of 14ns, coherence time of fundamental state of more than 1ms [1]. Demonstrate realization of isolated single defects. Demonstrated control through electric fields and mechanical strain [2].
  • VSi, named Si-vacancy: Zero photon lines (ZPL) at 862nm and 917nm, lifetime of excited state of 5.3ns, coherence time of fundamental state of more than 1us [3]. Demonstrate realization of isolated single defects.
  • Vanadium interstitials V4+ (3d1): Zero photon lines (ZPL) at 1278nm and 1334nm, lifetime of excited state of 160 and 40ns, coherence time of fundamental state of more than 100ns [4].
  • Molybidenum interstitials Mo5+ (4d1): Zero photon lines (ZPL) at 1076nm, lifetime of excited state of 40ns, coherence time of fundamental state of more than 1us [4].
Di-vacancy and Si-vacancies have potential applications on quantum sensing and computation, with the foreseen possibility of long range spin-phonon coupling similarly with what is predicted for NV centers in diamond [5]. But, whereas studies on diamond require expensive special mm-sized samples, large SiC wafers with quality sufficient for quantum technology are already available. Also, in contrast to diamond, SiC is routinely p- and n-doped to make electronic devices. Selective etching, either on hetero-epitaxial structures (3C-SiC/Si) or by electro-chemistry in n-p doped regions, has been used to fabricate high-quality mechanical structures and optical microcavities. The available wealth of processing techniques will enable integrated devices containing electronics and quantum photonics. Furthermore, the electro-optic properties of SiC offer prospects towards the integration of active photonic components

V4+ and Mo5+ interstitials, on the other hand, have ZPL in the telecommunications “O”-band, thereby enabling extremely low-loss photon propagation. Furthermore, these two defects contain electronic and nuclear spins which can act as memories in quantum repeater nodes. This method would permit the creation of robust transcontinental quantum information links.
Different optical cavity schematicszoom
Different optical cavity schematics
The Paul Scherrer Institute is currently engaged on the realization of micro-fabrications (photon-crystal and Fabry-Perot cavities) for the enhancement of the spin-photon interface properties of these defects.
[1] https://www.nature.com/articles/nmat4144
[2] https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.187601
[3] https://www.nature.com/articles/nmat4145
[4] https://arxiv.org/abs/1802.06714
[5] http://dx.doi.org/10.1103/PhysRevLett.110.156402

Sidebar

Contact

Dr. Maria del Mar Carulla Areste
Laboratory for Micro and Nanotechnology

Telephone:
+41 56 310 3574

Email:
maria.carulla@psi.ch

 
top

Pied de page

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Suisse

Téléphone: +41 56 310 21 11
Téléfax: +41 56 310 21 99

Comment nous trouver 
Contact

Centre de visiteurs psi forum
Laboratoire élèves iLab (en allemand)
Centre de protonthérapie
Centre de Formation du PSI
PSI Guest House (en anglais)
PSI Gastronomie (en allemand)
psi forum shop

Service & Support

  • Annuaire
  • User Office
  • Accelerator Status
  • Publications du PSI
  • Fournisseurs
  • E-facture
  • Computing (en anglais)
  • Sicherheit (en allemand)

Carrière

  • Travailler au PSI
  • Offres d'emploi
  • Formation initiale et formation continue
  • Career Center
  • Formation professionnelle (en allemand)
  • Centre de Formation du PSI

Pour les médias

  • Le PSI en bref
  • Chiffres et faits
  • Le coin médias
  • Communiqués de presse
  • Réseaux sociaux

Suivez le PSI: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Impressum
  • Conditions d'utilisation / Protection des données
  • Login éditeurs