Aller au contenu principal
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Rechercher
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOuvrir ce point de menu principal
    • Research Initiatives
    • Research Integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOuvrir ce point de menu principal
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Large Research Facilities
  • Facilities and InstrumentsOuvrir ce point de menu principal
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOuvrir ce point de menu principal
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

Vous êtes ici:

  1. PSI Home
  2. Labs & User Services
  3. PSD
  4. LSC
  5. PEM
  6. Research Overview
  7. In situ mechanical testing
  8. X-ray Laue Diffraction

Navigation secondaire

Photons for Engineering and Manufacturing

  • People
    • Alumni
  • Research Overview Sous-menu élargi
    • In situ mechanical testing Sous-menu élargi
      • X-ray Powder Diffraction
      • X-ray Laue Diffraction
      • Neutron Powder Diffraction
    • In situ cooling
    • High resolution digital image correlation
    • Molecular dynamics
    • Crystal plasticity
  • Projects
    • ERC MULTIAX
    • 18ct Gold Alloys
    • Additive Manufacturing
    • Micro-crystals
    • Nanostructured Materials
    • Al Alloys
    • SFAAM
  • Infrastructure
    • Selective laser melting
    • Micro Tensile Machine
    • Tension/Compression Module
    • Minibiaxial Tensile Machine
    • Mesobiaxial Tensile Machine
    • Micro Shear Device
    • Micro Compression Device
  • Teaching and Education
  • Publications
  • Scientific Highlights and News

Info message

Ce contenu n'est pas disponible en français.

In-situ Laue x-ray microdiffraction

Schematic view of the in-situ micro compression setup installed at the MicroXAS beam line of the Swiss Light Source
Schematic view of the in-situ micro compression setup installed at the MicroXAS beam line of the Swiss Light Source
Laue diffraction is one of the oldest diffraction techniques. Traditionally, it was applied to determine the orientation of single crystals. With the advent of advanced micro-focussing optics at synchrotrons Laue microdiffraction has become an important microstructural characterisation tool for both single crystals and poly-crystals.

In 2005 an in-house developed micro compression device has been installed at the MicroXAS beam line of the Swiss Light Source (SLS). It allows compressing micron-sized objects (usually in the shape of micro-pillars) while recording Laue diffraction patterns. This in-situ method provides information on the evolution of the microstructure of single crystals during deformation. It allows identifying, for instance, activated slip systems, strain gradients, twinning, the formation of boundaries, etc. Detail on the setup can be found in JOM 62 (2010) 36 - http://dx.doi.org/10.1007/s11837-010-0178-4.


Schematic view of the in situ shear device
Schematic view of the in situ shear device
In 2005 an new miniaturized deformation device was developed that allow to perform in situ cyclic shear experiments. In these experiments a small section of the sample is scanned through the x-ray microbeam and at each point a Laue diffraction pattern is recorded. This allows to generate local crystal misorientation maps, which can in turn be further analysed to, for instance, maps of geometrical necessary dislocation densities. More details can be found in the following paper: Acta Materialia 112, 184 (2016). DOI: 10.1016/j.actamat.2016.04.011.


Main publications

Laue microdiffraction characterisation of as-cast and tensile deformed Al microwires
Deillon L, Verheyden S, Ferreira Sanchez D, Van Petegem S, Van Swygenhoven H, Mortensen A
Philosophical Magazine. 2019; 99(15): 1866-1880.
https://doi.org/10.1080/14786435.2019.1605220

Plastic deformation of Insb micro-pillars: a comparative study between spatially resolved Laue and monochromatic X-Ray micro-diffraction maps
Sadat T, Verezhak M, Godard P, Renault PO, Van Petegem S, Jacques V, et al.
In: Seefeldt M, ed. Residual stresses 2018. Vol. 6. Materials research proceedings.
Millersville, USA: Materials Research Forum LLC.; 2018.
https://doi.org/10.21741/9781945291890-

Laue micro-diffraction and crystal plasticity finite element simulations to reveal a vein structure in fatigued Cu
Irastorza-Landa A, Grilli N, Van Swygenhoven H
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 104, 157 (2017).
DOI: 10.1016/j.jmps.2017.04.010


Effect of pre-existing immobile dislocations on the evolution of geometrically necessary dislocations during fatigue
Irastorza-Landa Ainara, Grilli Nicolo, Van Swygenhoven Helena
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING 25, 055010 (2017).
DOI: 10.1088/1361-651X/aa6e24


Following dislocation patterning during fatigue
Irastorza-Landa A, Van Swygenhoven H, Van Petegem S, Grilli N, Bollhalder A, Brandstetter S, Grolimund D
ACTA MATERIALIA 112, 184 (2016).
DOI: 10.1016/j.actamat.2016.04.011


Origin of Anomalous Slip in Tungsten
C Marichal, K Srivastava, D Weygand et al.
Physical Review Letters 113, 025501 (2014).


{110} Slip with {112} slip traces in bcc Tungsten
C Marichal, H Van Swygenhoven, S Van Petegem et al.
Scientific Reports 3, 2547 (2013).


Slip in directionally solidified Mo-alloy micropillars - Part I: Nominally dislocation-free pillars
J Zimmermann, H Van Swygenhoven, C Marichal, S Van Petegem, C Borca, B Bartova, E Oveisi, C Hebert
Acta Materialia 60, 4604 (2012).


Slip in directionally solidified Mo-alloy micropillars-Part II: Pillars containing defects
J Zimmermann, H Van Swygenhoven, S Van Petegem, C Borca
Acta Materialia 60, 4614 (2012).


The Use of Laue Microdiffraction to Study Small-scale Plasticity
H Van Swygenhoven, S Van Petegem
JOM 62, 36 (2010).


Effects of focused ion beam milling and pre-straining on the microstructure of directionally solidified molybdenum pillars: A Laue diffraction analysis
J. Zimmermann, S. Van Petegem, H. Bei, D. Grolimund, E.P. George, H. Van Swygenhoven
Scripta Materialia 62, 746 (2010)


On the plasticity of small-scale nickel-titanium shape memory alloys
C.P. Frick, B.G. Clark, A.S. Schneider,R. Maaß, S. Van Petegem, H. Van Swygenhoven
Scripta Materialia 62, 492 (2010)


Smaller is stronger: the effect of strain hardening
R. Maaß, S. Van Petegem, D. Ma, J. Zimmermann, D. Grolimund,F. Roters, H. Van Swygenhoven, D. Raabe
Acta Materialia 57, 5996 (2009)


In-situ Laue diffraction of metallic micropillars
R. Maaß, S. Van Petegem, C.N. Borca and H. Van Swygenhoven
Materials Science and Engineering A 524, 40 (2009)


On the initial microstructure of metallic micropillars
R. Maaß, S. Van Petegem, J. Zimmermann, C.N. Borca and H. Van Swygenhoven
Scripta Materialia 59, 471 (2008)


Crystal rotation in Cu single crystal micropillars: In situ Laue and electron backscatter diffraction
R. Maaß, S. Van Petegem, D. Grolimund, H. Van Swygenhoven, D. Kiener, G. Dehm
Applied Physics Letters 92, 071905 (2008)


Time-Resolved Laue Diffraction of Deforming Micropillars
R. Maaß, S. Van Petegem, H. Van Swygenhoven, P.M. Derlet, C.A. Volkert, D. Grolimund
Physical Review Letters 99, 145505 (2007)
Movies on Laue spot dynamics can be found at http://netserver.aip.org/cgi-bin/epaps?ID=E-PRLTAO-99-002738


A strong micropillar containing a low angle grain boundary
R. Maaß, S. Van Petegem, H. Van Swygenhoven, M. Uchic
Applied Physics Letters 91, 131909 (2007)


Defect structure in micropillars using x-ray microdiffraction
R. Maaß, D. Grolimund, S. Van Petegem, M. Willimann, M. Jensen, H. Van Swygenhoven, T. Lehnert, M.A.M. Gijs, C.A. Volkert, E.T. Lilleodden, R. Schwaiger
Applied Physics Letters 89, 151905 (2006)

 

Sidebar

EPFL.png

Contact

PEM
Paul Scherrer Institut
CH-5232 Villigen-PSI
Switzerland

Prof. Helena Van Swygenhoven
Group Leader

Telephone:
+41 56 310 2931
E-mail:
helena.vs@psi.ch

SINQ Facility

Information about the Neutron Source.


LSC Homepage

Laboratory for Condensed Matter Physics


Photon Science Division

Homepage of PSI Division Photon Science (PSD)

Scientific Highlights PSD

Scientific Highlights of PSI Division Photon Science (PSD)

Swiss Light Source SLS

Synchrotron light large research facility.

User Office

Soutien pour les utilisateurs externes des grandes installations scientifiques du PSI


Current openings PSD

Job Opportunities at Research Division Photon Science


Itinéraire PSI

Comment nous trouver (l'itinéraire et plan d'accès)
top

Pied de page

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Suisse

Téléphone: +41 56 310 21 11
Téléfax: +41 56 310 21 99

Comment nous trouver 
Formulaire de contact

Centre de visiteurs psi forum
Laboratoire élèves iLab (en allemand)
Centre de protonthérapie
Centre de Formation du PSI (en allemand)
PSI Guest House (en anglais)
PSI Gastronomie (en allemand)

Service & Support

  • ​Annuaire/Liste de contacts
  • User Office
  • Accelerator Status
  • Publications du PSI
  • Fournisseurs
  • E-facture
  • Computing (en anglais)
  • Sicherheit (en allemand)

Carrière

  • Travailler au PSI
  • Offres d'emploi
  • Formation initiale et formation continue
  • Formation professionnelle (en allemand)
  • Centre de Formation du PSI

Pour les médias

  • Le PSI en bref
  • Chiffres et faits
  • Contact destiné aux médias
  • Communiqués de presse
  • Social Media Newsroom

Suivez le PSI: Twitter (en allemand) LinkedIn Youtube Issuu RSS

Footer legal

  • Impressum
  • Conditions d'utilisation
  • Login éditeurs