News & Scientific Highlights

Datum
3D Printing silica aerogels.

3D printing silica aerogels at the micrometer scale

A group of EMPA and ETH Zürich researchers have developed a new method to directly write ink made of silica aerogels in 3D. Thanks to X-ray phase contrast tomography at the TOMCAT beamline they characterized the resulting printed material with different compositions. Their results were published in Nature on August 18, 2020.

Read more
Cover art of Small 16(33)

Phase contrast microtomography reveals nanoparticle accumulation in zebrafish

Metal-based nanoparticles are a promising tool in medicine – as a contrast agent, transporter of active substances, or to thermally kill tumor cells. Up to now, it has been hardly possible to study their distribution inside an organism. Researchers at the University of Basel in collaboration with the TOMCAT team have used phase contrast X-ray tomographic microscopy to take high-resolution captures of the nanoparticle aggregation inside zebrafish embryos.

The study was published in the journal Small and featured on the cover of its current issue.

Read more

4 times compression factor for tomographic data feasible

In a recent study, TOMCAT has shown that lossy compression by a factor of at least 3 to 4 of raw acquisitions generally does not affect the reconstruction quality and that higher factors (six to eight times) can be achieved for tomographic volumes with a high signal-to-noise ratio as it is the case for phase-retrieved datasets. This finding is relevant to current challenges on large tomography data management and storage especially at synchrotron facilities. The results of this study was published in Journal of Synchrotron Radiation.

Read more
3D rendering of an anti-tube

Miniaturized fluidic circuitry observed in 3D

The team of Prof. Thomas Hermans at the University of Strasbourg in France managed to create wall-less aqueous liquid channels called anti-tubes. Thanks to X-ray phase contrast tomography at the TOMCAT beamline those anti-tubes could be observed in 3D. The exciting results were published in Nature on May 6, 2020.

Read more
Tensor tomography images of a crocodile tooth.

Rapid 3D directional small-angle scattering imaging achieved at TOMCAT

Researchers from the TOMCAT beamline have developed a small-angle scattering tensor tomography method to visualize microscopic features within a macroscopic field of view with unprecedented data acquisition speed. The results of the study were published in Applied Physics Letters on April 1, 2020.

Read more
High-resolution tomographic cross-section of a fresh juvenile rat lung

X-ray Imaging for Biomedicine: Imaging Large Volumes of Fresh Tissue at High Resolution

The TOMCAT beamline at the Swiss Light Source specializes in rapid high-resolution 3-dimensional tomographic microscopy measurements with a strong focus on biomedical imaging. The team has recently developed a technique to acquire micrometer-scale resolution datasets on the entire lung structure of a juvenile rat in its fresh natural state within the animal’s body and without the need for any fixation, staining or other alteration that would affect the observed structure (E. Borisova et al., 2020, Histochem Cell Biol).

Read more
Overview of the RECAST3D interface.

Towards dynamic feedback control during time-resolved CT at TOMCAT

Researchers from the CWI in Amsterdam and the TOMCAT beamline have developed and implemented a real-time CT reconstruction, visualisation, and on-the-fly analysis approach to monitor dynamic processes as they occur. With processes of  multiple sets of CT slices per second, this represents the next crucial step towards adaptive feedback control of time-resolved in situ tomographic experiments. The results of this study were published in Scientific Reports on December 5, 2019.

Read more
Embryology of 609 million-year old Caveasphaera. These are computer models based on X-ray tomographic microscopy of the fossils, showing the successive stages of development.

Animal embryos evolved before animals

Detailed characterization of cellular structure and development of exceptionally preserved ancient tiny fossils from South China by synchrotron based X-ray tomographic microscopy at TOMCAT led an international team of researchers from the University of Bristol and Nanjing Institute of Geology and Palaeontology to the discovery that animal-like embryos evolved long before the first animals appear in the fossil record.

Read more
Teaser Roentgenkleinwinkelstreuung

A fast and precise look into fibre-reinforced composites

Media Releases Future Technologies Research Using Synchrotron Light

Researchers at the Paul Scherrer Institute PSI have developed a new process with which fibre-reinforced composite materials can be precisely X-rayed. This could help to develop better materials with novel properties.

Read more