Scientific Highlights

5 mai 2021

New record photon pulse energies at SwissFEL

The very large number of coherent photons produced by free-electron lasers is one of the key qualities of such facilities, attracting users from numerous research fields including chemistry, biology and materials science. Recently, the two branches of PSI's free-electron laser SwissFEL each have reached new record pulse energies, packing more photons than ever before into ultrashort X-ray pulses delivered at rates of 100 Hz to the users of both beamlines.

En savoir plus
28 janvier 2021
Next generation transverse deflection structures capable of providing new opportunities for beam diagnostics.

Novel X-band transverse deflection structure with variable polarization

The growing request for sophisticated electron beam manipulation techniques for the optimization of Free Electron Lasers (FELs) or novel acceleration techniques requires enhanced beam control capabilities  and characterization. One of the most important challenge is the development of new diagnostic techniques able to characterize the longitudinal phase space of the beam, including spatial correlation terms, with a resolution in the range of a few tens of fs to sub-fs.

En savoir plus
6 mars 2020

Demonstration of Large Bandwidth Hard X-Ray Free-Electron Laser Pulses at SwissFEL

We have produced hard x-ray free-electron laser (FEL) radiation with unprecedented large bandwidth tunable up to 2%. The experiments have been carried out at SwissFEL, the x-ray FEL facility at the Paul Scherrer Institute in Switzerland. The bandwidth is enhanced by maximizing the energy chirp of the electron beam, which is accomplished by optimizing the compression setup. We demonstrate continuous tunability of the bandwidth with a simple method only requiring a quadrupole magnet. The generation of such broadband FEL pulses will improve the efficiency of many techniques such as x-ray crystallography and spectroscopy, opening the door to significant progress in photon science. It has already been demonstrated that the broadband pulses of SwissFEL are beneficial to enhance the performance of crystallography, and further SwissFEL users plan to exploit this large bandwidth radiation to improve the efficiency of their measurement techniques.

En savoir plus
11 décembre 2019
ultralow-emittance SwissFEL

Generation and measurement of ultralow-emittance electron beams at SwissFEL

The emittance is a fundamental parameter of particle distributions accounting for the average spread of the particles’ positions and momenta. We have generated and characterized intense ultralow-emittance electron beams, setting new standards for electron linear accelerators. The measurements have been carried out at the SwissFEL accelerator of PSI. SwissFEL is one of the few X-ray free-electron lasers (FELs) worldwide, which are cutting-edge research instruments to investigate matter with resolutions at the level of atomic processes.

En savoir plus
30 septembre 2019

Award by NPSS

The IEEE Nuclear Plasma Science Society has recently awarded Dr. Paolo Craievich, leader of the group «RF-system 2» in GFA, with the Particle Accelerator Science Technology award for his exceptional contributions to accelerator science and technology.

En savoir plus
17 juin 2019
Measured spectrum for five consecutive FEL pulses

First Demonstration of Sub-femtosecond X-ray Pulses at SwissFEL

We have produced ultra-short X-ray FEL pulses at SwissFEL by strongly compressing low-charge electron beams.  Single-shot spectral measurements with only a single mode (see the figure below) indicate a pulse duration well below one femtosecond (detailed analysis on the exact pulse duration is ongoing).

En savoir plus
30 septembre 2017

Best publication

A team of GFA and CPT physicists has worked out a novel achromatic beam optics concept for a proton therapy gantry. The article on the concept in the journal Zeitschrift für Medizinische Physik has been awarded a prize for the best publication in 2016. The jury states: „The paper of Alexander Gerbershagen et al. entitled „A novel beam optics concept in a particle therapy gantry utilizing the advantages of superconducting magnets” describes a new concept of a first order design of the beam optics of a superconducting proton therapy gantry beam. The jury was impressed by the well-structured experimental work with clear improvement of large momentum acceptance in the gantry which opens the possibility of implementation new and faster dose application techniques in proton therapy.”

En savoir plus
8 novembre 2016
X-band structure and its input/output power couplers.

X-band prototype structure

Radio-frequency structures at X-band frequencies (~ 12 GHZ) are being considered for applications in compact Free Electron Lasers, medical linacs, a future linear collider (CLIC project) and as a diagnostic for measuring ultra-short (femtosecond) electron pulses in FELs. A first prototype of such a structure has been built at PSI employing the realization procedures that have been developed for the C-Band (6 GHz) structures of the SwissFEL linac.

En savoir plus