Aller au contenu principal
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI) Paul Scherrer Institut (PSI)
Rechercher
Paul Scherrer Institut (PSI) Paul Scherrer Institut (PSI)

Hauptnavigation

  • Labs & User ServicesOuvrir ce point de menu principal
    • Overview
    • Research at PSI
    • Research Divisions and Labs
    • Facilities and Instruments
    • Research Initiatives
    • PSI User Labs
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • Useroffice
  • VisiteursOuvrir ce point de menu principal
    • Aperçu
    • Contact
    • Comment nous trouver
    • Manifestations
    • Centre de visiteurs psi forum
    • Schülerlabor iLab
    • Centre de protonthérapie
  • IndustrieOuvrir ce point de menu principal
    • Aperçu
    • Le transfert de technologie
    • Entreprises spin-off
    • PARK innovAARE
  • Notre rechercheOuvrir ce point de menu principal
    • Actualités de notre recherche
    • Matière et matériaux
    • L'Homme et la santé
    • Energie et environnement
    • Grands instruments de recherche
    • Brochures
    • Films
    • Pour les médias
  • Carrière & FormationOuvrir ce point de menu principal
    • Offres d'emploi
    • Politique du personnel
    • Travailler au PSI
    • Equal Opportunities, Diversity & Inclusion
    • Formation initiale et formation continue
    • Formation professionnelle
    • Centre de Formation du PSI
    • Programme de soutien "PSI Career Return Program"
    • PSI-FELLOW/COFUND
  • Sur le PSIOuvrir ce point de menu principal
    • Le PSI en bref
    • Stratégie
    • Chartes
    • Chiffres et faits
    • Organisation
    • Fournisseurs
    • Clients – e-facture
    • Infrastructure informatique (en allemand et en anglais)
    • Sécurité au PSI (en allemand)

Vous êtes ici:

  1. PSI Home
  2. Labs & User Services
  3. NUM
  4. LMU
  5. Bulk µSR
  6. Research

Navigation secondaire

Bulk µSR Group

  • Introduction
  • People
  • Research
  • Publications
  • Contact

Info message

Ce contenu n'est pas disponible en français.

Group Research

Magnetic and Superconducting Properties of Iron-Based Superconductors

Luetkens-Fig2.jpg
Magnetism and superconductivity are key elements in the electronic phase diagram of all unconventional superconductors, such as the high-Tc cuprates, heavy-fermion, organic and Fe-based superconductors.

Muon spin rotation (µSR) is a powerful tool for studying the exact nature of the transition from the antiferromagnetic to the superconducting phase in high-Tc superconductors as a function of a control parameter such as doping or pressure. In this context, it is of special advantage that µSR, as a local probe, is sensitive to both the superconducting and magnetic volume fractions and to the respective order parameters, that fundamental microscopic parameters such as the magnetic penetration depth can be determined absolutely, and that µSR is extremely sensitive to small-moment, short-range and slowly fluctuating magnetic order. The accessible magnetic penetration depth is a relevant length for characterizing the superconducting state, the inverse square of it being the superfluid density. Its dependence on temperature, doping, orientation, and magnetic field contains information about the superconducting order parameter and gap symmetry, and is of central importance for any theory of unconventional superconductivity. On the other hand, the temperature dependence of the magnetic order parameter can be determined with very high precision even in situations were the magnetic coherence length is of the order of ten lattice constants only. The magnetic and superconducting properties are examined by implanting the muon which acts as a local magnetic probe directly into the magnetic material or into a magnetic field distribution which is created by the magnetic vortex lattice which is formed when a type-II superconductor is subject to an external magnetic field.

Probing Non-Centrosymmetric Superconductors with Muons

The term “non-centrosymmetric (NCS)” suggests that a material lack inversion symmetry in its crystal structure. Superconductivity in the NCS systems has recently attracted substantial interest since the discovery of the heavy fermion superconductor CePt3Si (see E. Bauer, et al., Non-Centrosymmetric Superconductors: Introduction and Overview, Springer, 2012; or E. Bauer, et al., Phys. Rev. Lett. 92, 027003, 2004).

The lack of inversion symmetry raises the possibility of a special form of spin-orbit coupling, called anti-symmetric spin-orbit coupling (ASOC), e.g. Rashba-type of coupling. ASOC has a very large energy scale (10 - 100 meV) and can easily lift the degeneracy of the conduction energy bands with spin-split Fermi surfaces. The lack of inversion symmetry leads to novel spin fluctuations which tend to mix spin-singlet and spin-triplet parts. Both components of such “mixed-parity” pairing state display non-trivial momentum dependencies which may give rise to unusual properties including a helical vortex phase, accidental line nodes in the gap function and complex phase diagrams involving superconductivity and magnetism.

Muon spin rotation study of novel skutterudite superconductors

Fig1.png
Filled skutterudite compounds are know to exhibit a broad variety of ground state properties. Depending on filling ion ferro-, antiferromagnetic, quadrupolar, and superconducting ordering were observed. Heavy electron mass was evidenced in a number of their representatives. In collaboration with the Max Planck Institute for Chemical Physics of Solids (MPI-CPS) in Dresden we investigated series of Ge-based filled skutterudite compounds with muon spin rotation. In PrPt4Ge12 despite of cubic symmetry of crystal lattice we found unconventional superconducting order parameter with point nodes, resembling that found in the isostructural heavy fermion compound PrOs4Sb12. Later, signature of time reversal symmetry breaking was detected in PrPt4Ge12 with µSR. Based on the analysis of series of Pr(1-x)LaxPt4Ge12 compounds we deduced that this breaking is due to non s-wave orbital pairing rather than spin-triplet pairing of Cooper pairs in contrast to that found in PrOs4Sb12. On the other hand in BaPt4Ge12 and series of BaPt(4-x)AuxGe12 compounds conventional s-wave behavior was detected. In collaboration with MPI-CPS we continue to study filled-skutterudites and related compounds to determine their properties and uncover grounds of their unconventional behavior.

Sidebar

LMU and Groups

  • Laboratory for Muon Spin Spectroscopy (LMU)
  • Low-Energy Muons Group
  • Bulk-µSR Group

SμS Facility

  • Instruments
  • Beamlines
  • User Services

User Office

Provides all information about user research at PSI Large Research Facilities

NUM Homepage

PSI Division Research with Neutrons and Muons.

top

Pied de page

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Suisse
Comment nous trouver 

Impressum 
Conditions d'utilisation

Login

Téléphone: +41 56 310 21 11
Téléfax: +41 56 310 21 99
Formulaire de contact 

Centre de visiteurs psi forum
Laboratoire élèves iLab (en allemand)
Centre de protonthérapie

Suivez le PSI: Twitter (en allemand) LinkedIn Youtube Issuu RSS

Quicklinks

  • ​Annuaire/Liste de contacts
  • Digital User Office
  • Transfert de technologie
  • Publications du PSI
  • Computing (en anglais)
  • Sicherheit (en allemand)
  • Offres d'emploi
  • Berufsbildung (en allemand)
  • Fournisseurs
  • Clients – e-facture
  • PSI Guest House (en anglais)
  • PSI Gastronomie (en allemand)

Pour les médias

  • Contact destiné aux médias
  • Communiqués de presse
  • Social Media Newsroom
  • Chiffres et faits
  • Le PSI en bref
  • Films
  • DE
  • EN
  • FR