The use of ¹⁵²Tb in preclinical investigations: its mass separation and subsequent application for imaging

<u>Nicholas P. van der Meulen^{1,2}</u>, Christiaan Vermeulen¹, Ulli Köster³, Karl Johnston⁴, Stephanie Haller¹, Roger Schibli^{1,5}, Andreas Türler^{2,6}, Cristina Müller¹

¹ Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen-PSI, Switzerland

² Laboratory of Radiochemistry and Environmental Chemistry, Paul Scherrer Institute, Villigen-PSI, Switzerland

³ Institut Laue-Langevin, Grenoble, France

⁴ ISOLDE-CERN

⁵ Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland

⁶ Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland

<u>Introduction</u>: Terbium is a unique element as it provides a quadruplet of radionuclides suited for diagnostics and therapy in nuclear medicine [1]. As part of the PSI-ISOLDE collaboration, we concentrated on the collection and purification of ¹⁵²Tb (β^+ -emitter, T_{1/2} = 17.5 h), for significant PET imaging investigations.

<u>Methods:</u> Mass-separated beams of ¹⁵²Tb were implanted at ISOLDE-CERN into Zn-coated Au foils. With 4 to 6 hours of collection and 2 hours decay of co-implanted activities, up to 2 GBq ¹⁵²Tb (and its mass equivalents) could be shipped to PSI.

The ¹⁵²Tb was extracted from the Zn foils by dissolving them in HNO_3/NH_4NO_3 , loaded on to a macroporous strongly acidic cation exchange resin and the Tb radionuclide eluted using dilute a-hydroxyisobutyric acid (a-HIBA). The product eluent was used directly for the radiolabeling process.

DOTANOC was labelled with ¹⁵²Tb and injected into AR42J tumor-bearing mice, which were imaged using a benchtop small animal PET/CT scanner (Genisys8, Sofie Biosciences).

<u>Results:</u> ¹⁵²Tb (~500 MBq) was effectively separated from Ce, Pr, Ba and La, yielding a radionuclidically pure product. The product in question was successfully labelled to DOTANOC at high specific activity of up to 10 MBq/nmol and radiochemical purity of >95%.

Tumor visualization was readily achieved with ¹⁵²Tb-DOTANOC and, due to the long half-life of ¹⁵²Tb, it was possible to also image the tumors at late time points after injection of the mice.

<u>Conclusion:</u> The latest run of experiments in the PSI/ISOLDE collaboration proved to be the most successful to date, with reproducible harvesting of ¹⁵²Tb and its subsequent chemical separation from impurities. The product was successfully labelled to peptides and injected into mice for imaging. Following these encouraging results, more ambitious studies are planned in future.

<u>Acknowledgements:</u> We thank Vladimir Madea and Frank Wienholz for MRTOF work at ISOLDE for this experiment.

References:

[1] C. Müller et al., J. Nucl. Med. 53, 1951 (2012).

[2] C. Müller et al., J. Nucl. Med. 54, 124 (2013).

[3] C. Müller et al., Nucl. Med. Biol. 41, e58 (2014).