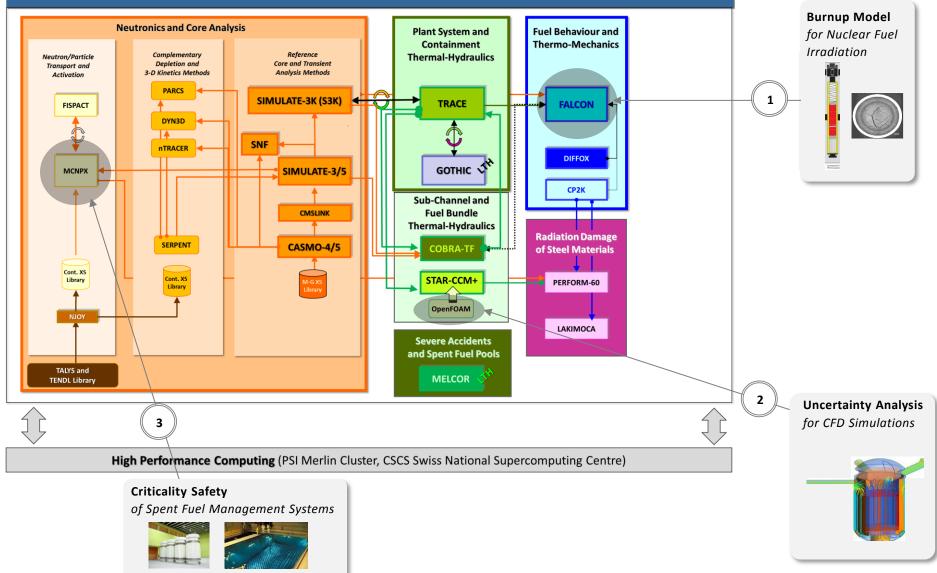


Semester/Master Projects 2017-2018

Method Development and Verification for LWR Safety Analyses


- 1. Fuel Safety
- 2. Uncertainty Analysis
- 3. Criticality Safety

MSc Projects 2017-2018

SWISS SIMULATION PLATFORM for Deterministic Safety Analyses

- IQNet -

SRE

PAUL SCHERRER INSTITUT

Burnup Model Update & Validation For the Fuel Performance Code Falcon

Scope

STARS.1

LRS/STARS is part of the EPRI Development Team for the re-designed new Falcon V1 stateof-the-art FEM Fuel Performance Code

Objectives

- 1. Literature review: open & PSI internal publications
- 2. Update of the burn-up model for Falcon V1
- 3. Development of a test matrix to validate the new versions of the code

Codes and Relevance

- \rightarrow Falcon V1 (2D FEM Fuel Thermo-mechanics)
- → CASMO/Serpent (Neutronics)
- \rightarrow Fuel Depletion
- ightarrow Fuel Safety and Reliability

Topics

- ightarrow Nuclear Fuels and Materials
- ightarrow Heat Transfer and Structural Mechanics

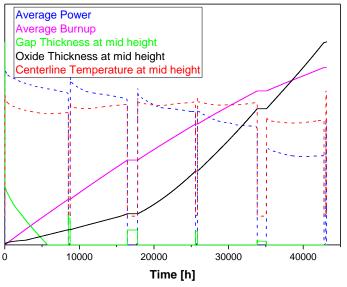


Fig 2: Typical output of a standard operation

22	23	24	t	59	60	
19	20	н	F	56	57	
16	υ.	10	÷	53	54	
13	14	15	f	50	51	
Fig 1: Fuel Rod (f	fuel and	12	÷	47		
cladding) as seer	n in the GUI	•	t	44	6	
			Ŀ	41	42	

Contact: Cedric.Cozzo@psi.ch

- http://www.psi.ch/stars -

Uncertainty Quantification Applied to CFD

nixing section

STARS.1

Project Overview

- Python scripts for generating inputs files based on non-intrusive Polynomial Chaos **Expansion** (PCE) theory
- Open-source OpenFOAM CFD solver for 2D fast solutions
- Global Sensitivity Analysis (GSA) for discarding input parameters with negligible influence on the output
- GEMIX experiment measurements available for validation

Semester/Master Project Plan

- Familiarization with PCE theory and OpenFOAM code ٠
- Identification of realistic probability density functions ٠ (PDF) for turbulent model constants
- **Development of Python scripts** for pre- and post-processing • according to PCE theory
- Running 2D CFD simulations on the multi-dimensional sam
- Performing GSA
- [*] D. Bestion, R. Camy, A. Barthet et al. "Review of Uncertainty Methods for

Computational Fluid Dynamics Application to Nuclear Reactor Thermal Hydraulics", NEA/CSNI/R(2016)4, Feb. 2016 vs. Experiments (dots) [*].

First row, mean velocity field <U>; Second row, turbulent kinetic

Energy <k>.

uncertain velocity profile

and turbulence intensity

computation domain

Contact: Riccardo.Puragliesi@psi.ch

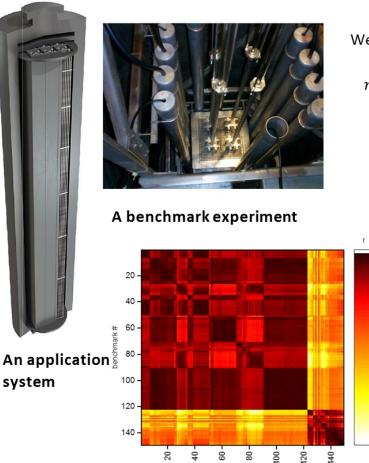
0.8 (s/m) < 0.6(s/m) < 0.4x = 70 mmx = 450 mm0.2 0.006 x = 70 mmx = 450 mm $(m_2^2/s_2) \approx (m_2^2/s_2) \approx 0.002$ 20 -20 20 -20 y(mm) $y(m^{0}m)$ ANSYS-FLUENT solution ($\pm 1\sigma$)

Schematic of **GEMIX** facility

50 mm

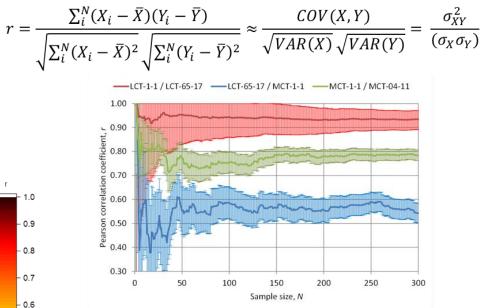
honey

combs coarse grids


fine grid

150 mm 200 mm 200 mm 100 mm

PAUL SCHERRER INSTITUT


PSI CSE/BUC and MCNP/NUSS -based Representativity Assessment for enhanced V&V

STARS.3

NUSS can be used to produce a correlation matrix for the PSI validation benchmark suite + an application case

We need to assess systems "similarities" through correlation analysis

The MS project goals:

0.5

0.4

0.3

- Identify additional criticality benchmarks, appropriate for BUC V&V (including Proteus configurations with SNF)
- Develop MCNP Models for the selected benchmarks
- Produce correlation matrix for the entire set of models
- Derive Upper Subcritical Limit for Keff of the application system using the performed V&V

Contact: Alexander.Vasiliev@psi.ch

PAUL	S C H E I	RRER	N S '	TITUT
	—	—	ſ	
	٦			

For more on STARS and associated research/education programs please consult http://www.psi.ch/stars

分 PSI Home > Project STARS

roject STARS		Welcome	to the SI	ARS Prog
bout STARS	\sim	Steady-state	and	1 + 1
am		Transient Analysis		★ ¥¥¥
rtners		Research for		
de System	~	Swiss Reacto		
earch & Highlights	\sim			STARS
tific Support				*****
ation and Training				
cations	\sim		§	****
gress Reports		je da		
its				
lity Management				

