

μSR Facility 2018

last update: 20.10.2018

Contents

1	IMF	PORTANT FACTS	3
2	TH	E HELIOX INSERT - OVERVIEW	4
3	PRI	NCIPLE OF OPERATION	6
	3.1	Initial Cooldown	7
	3.2	Changing the temperature between base and 2 K	10
	3.3	Going above 2 K (and below 15 K)	11
	3.4	Going above 15 K	12
	3.5	Coming back to below 2 K (parameter REGEN_ABOVE)	13
4	SAN	MPLE CHANGE	14
	4.1	Removing the Heliox cryostat from the Variox cryostat	14
	4.2	Opening the Heliox sample space	18
	4.3	Cleaning the seal	19
	4.4	Sample change, check list	20
	4.5	Inserting the Heliox into the Variox	22
	4.6	Going from Variox mode to Heliox mode	23
	4.7	Going from Heliox mode to Variox mode	25
5	НΟ	W TO SET THE DESIRED TEMPERATURE FROM Deltat	27

	5.1	Interactively	27
		5.1.1 Up to 15 K	27
		5.1.2 Above 15 K	27
	5.2	In an Autorun Sequence	27
		5.2.1 Up to 15 K	28
		5.2.2 Above 15 K	28
6	EXA	AMPLE AUTORUN COMMANDS	30
7	НΟ\	W TO CHECK THE PARAMETERS AND ANALYZE THE DATA	31
	7.1	How to check the different parameters	31
	7.2	How to directly analyze the data	31
8	HEL	IOX CHARACTERISTICS	32
	8.1	Initial Asymmetry	32
	8.2	Background	32
	8.3	WEU Field effect	33
	8.4	Beam size simulation at the sample place	34

This document is available at: https://www.psi.ch/smus/InstrumentDollyEN/QUICK_REF_HELIOX_DOLLY_November_2018.pdf

The sources are available in the LMU afs disk: /afs/psi/project/lmu/Facility/Manuals/DOLLY/Heliox_DOLLY/2018

1 IMPORTANT FACTS

Contact person:

Jean-Christophe Orain (phone 3632)

e-mail: jean-christophe.orain@psi.ch

In case Jean-Christophe is not around, contact Hubertus Luetkens (4450).

$Main\ computers:$

pc8533: data taking console (No web browsing in this pc, please!!!)

pc13369: users pc (to be used for users analysis)

hipa-pie1: pc to control the beamline mpc1364: pc to control the spinrotator II

psw411: backend workstation.

2 THE HELIOX INSERT - OVERVIEW

The Heliox cryostat used on Dolly is a commercial Oxford Instrument ³He fridge VT. A quick documentation can be found at http://www.oxford-instruments.com/products/cryogenic-environments/3he-inserts/helium-3-refrigerator-without-1k-pot-helioxvt. The VT Heliox is directly inserted in the Variox cryostat used as the 1 K pot. A scheme of the important part of the insert is shown below.

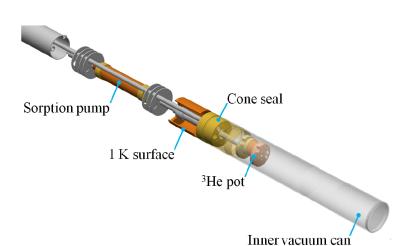


Figure 1: The HelioxVT "1 K surface" is cooled to below 2 K by the Variox Cryostat through exchange gas, and acts as the 1 K pot for the ³He refrigerator. The inner vacuum chamber (IVC) is sealed using a silicon based paste applied to a cone seal.

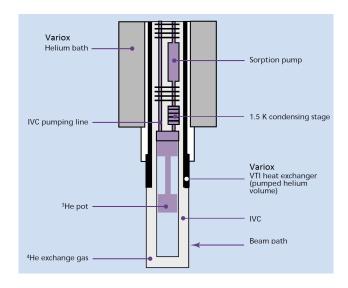


Figure 2: Schematic view of the bottom part of the Variox cryostat with the Heliox insert in position. The sample is attached on a copper rod fixed to the 3 He-pot. The 4 He excange gas in the IVC (100 mbar at room temperature) remains during the full operation. The exchange gas inside the 3 He insert is automatically condensed at low temperatures by a charcoal (activated carbon)

After cooling the insert, the exchange gas inside the ³He insert is then automatically condensed

by a charcoal (activated carbon), whereas the exchange gas in the IVC remains in it during the full operation. The ³He gas contained in a small dump sitting on top of the insert is then condensed at around 1.5 K. Once the ³He pot has reached a stable temperature and condensation is completed, the sorption pump will start to cool the ³He pot and the sample to below 300 mK.

To control the temperature of the ³He pot between the lowest attainable temperature and up to 2 K, the temperature of the sample is just regulated by changing the pumping efficiency of the sorption pump (i.e. the Mercury temperature controller will automatically heat the sorption pump and change its temperature in order to regulate its pumping power and ultimately change the sample temperature).

For higher sample temperatures and up to 15 K, it is most efficient to apply electrical power directly to the ³He pot heater. To provide cooling the ³He sorption pump is automatically warmed to 15 K to partially release the ³He charge from the sorption pump, thus providing a thermal link (through the gas) between the 1 K pot and the ³He pot.

For even higher temperatures, the temperature of the Variox should also be changed, as the exchange-gas absorbed in the charcoal will be released.

The HelioxVT sorption pumped ³He refrigerator is "single-shot" in the sense that there is only a finite quantity of ³He condensed into the system. Experimental heat loads are taken up by the latent heat of vaporisation of the liquid as it is transformed into vapour. Once all of the liquid ³He is consumed in this way, the system will start to warm. To cool the system again requires the "regeneration" of the ³He sorption pump (i.e. the sorption pump will be heated up to about 32 K) such that the adsorbed gas is freed and can be re-condensed into the ³He pot.

3 PRINCIPLE OF OPERATION

The heart of the temperature control is the Mercury temperature controller.

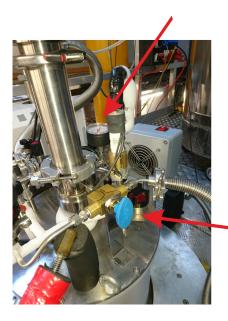
The electrical connections from the Variox and Heliox must be directed to the Heliox Mercury. This is performed by putting the switches of the switching box in the appropriate configuration.

This Heliox Mercury controller will on one side control the temperature of the VTI (i.e. Variox) by controlling its heater and the pressure in the VTI.

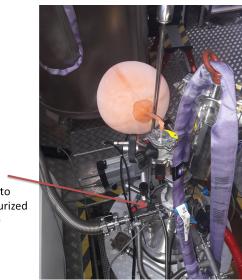
The closed loop control of the Variox temperature is achieved by servo-controlling its VTI heater. The closed loop control of the pressure in the VTI is performed by measuring the pressure in front of the main ⁴He pump and servo-controlling the needle valve of the Variox.

In normal operation, the temperature and pressure of the VTI (Variox) are set automatically by the Mercury. They must be overwritten when warming-up and cooling-down the ³He-insert and measuring at temperature higher than 15 K.

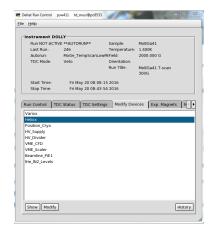
On the other side, the $\tt Heliox$ Mercury will take care about the 3He condensation and temperature stabilization of the 3He insert.


Note that even though the Mercury has the capability to measure the Helium and Nitrogen levels, these are always measured by the "Cryomagnetic" device LM510. The output of this device is used to control the automatic refilling of the Helium and Nitrogen into the Variox.

3.1 Initial Cooldown


The mounting of the sample is described in Section 4.

Once loaded, the insert is cooled by the VTI (Variox) down to around 20 K using exchange gas.


• Be sure to first evacuate the IVC using the IVC-pump by opening the 3-way blue-valve adequately (see Figure below).

• Close the 3-way blue-valve and insert 100 mbar of ⁴He-gas using the black-valve connected to the pressurized ⁴He bottle. One can check the pressure with the manometer (see Figures above and below).

- Valve to Pressurized bottle
- Be sure that all the electrical cables of the Heliox are connected and that the switch-box is set to the Heliox Mercury.
- Start the cool-down procedure. In Deltat go to Modify Devices then to Heliox and click on Modify. The procedure has to be done in two times:

- i) First set the setpoint for the Heliox and for the Variox temperatures to 10 K. Then click on OK.
 - One need to put more explicit picture where the 10 K temperature are set
- ii) Second set the pressure setpoint for the VTI to 35 mbar by going back to the Heliox tab.
 - One need to put more explicit picture where the 35 mbar pressure is set
 - Note that if one changes the temperatures and the pressure at the same time, the pressure will not be taken into account and the Variox temperature will decrease too slowly.
- After about 1 hour, the Heliox will reach a temperature around 30 K. As this procedure consumes quite a lot of helium, please try to keep it as short as you can.
- At this point, the first condensation can be initiated by simply setting the setpoint of the Variox to 1.4 K and the one of the Heliox to 0.1 K.
 - The Mercury will change the status of the Heliox to REGENERATE.

In the REGENERATE mode, the Mercury will automatically:

- Set the pressure setpoint for the VTI to 7 mbar (corresponding to the parameter OPTIMAL_NV_RG)
- Set the setpoint of the sorption pump to 32 K (parameter He_3SORB_REGEN)
- Switch off the Variox Heater.

The temperature of the Heliox will go down rather quickly down to 2 K (about 30 min) and after the cooling rate will decrease.

- When the temperature reaches 1.85 K (parameter CONDENSED_TEMP), the first step of the condensation is finished and the sorption pump heater is automatically switched OFF. The status of the Heliox remains to REGENERATE.
- Finally, when the Heliox temperature drops below the desired setpoint (if higher than 0.3 K) or below 1.65 K (parameter ACCEPT_BASE), then the status of the Heliox switches to LOW TEMP and the Mercury automatically sets the pressure setpoint for the VTI to 1.5 mbar (parameter OPTIMAL_NV_LT).

At this point, assuming that the setpoint is 0.1 K, it will take less than 10 minutes to reach temperatures below 0.3 K.

Note that 1 mbar corresponds roughly to 1 l/min of Helium measured by the Hasting flowmeter.

Note that the time needed to cool down the insert from room temperature and 0.3 K is about 2.5 hours. Successive regeneration of the ³He will be quicker.

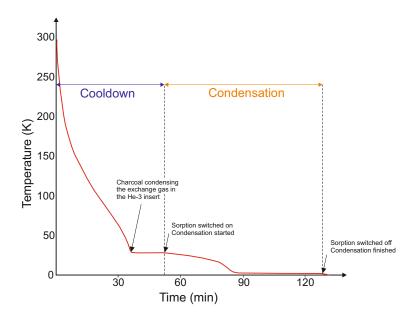


Figure 3: Typical time dependence of the \mathtt{Heliox} temperature during an initial cooldown procedure.

3.2 Changing the temperature between base and 2 K

The temperature can be easily changed between the base temperature (about 0.25 K) and 2 K (parameter CMODE_XOVER).

In this temperature range, the Mercury will keep the status of the Heliox to LOW TEMP.

- Set a new setpoint for the Heliox rather in Deltat or in an autorun sequence (see section 5). The Variox temperature DOES NOT have to be changed.
- The Mercury will servo-control the temperature of the sorption pump (and therefore change its pumping power) in order to reach the desired setpoint temperature at the ³He-pot.
- During this process the status of the Heliox will remain as LOW TEMP. The pressure setpoint for the VTI will still be 2 mbar (parameter OPTIMAL_NV_LT) and the Variox Heater will remain off.

In this temperature range, the setpoint can be changed back and forth as desired.

Figure 4: Typical temperature behaviour in the LOW TEMP regime.

3.3 Going above 2 K (and below 15 K)

When going above 2 K, the Mercury will change the status of the Heliox to HIGH TEMP.

- Set a new setpoint for the Heliox rather in Deltat or in an autorun sequence (see section 5). The Variox temperature DOES NOT have to be changed.
- The Mercury will automatically set the temperature of the sorption pump to 15 K (parameter He3_SORB_HT_CONTR). This is done to have some ³He gas available for thermal link.
- The Mercury will servo-control the heater located at the ³He-pot to reach the desired temperature.
- The pressure setpoint for the VTI will be set to 5 mbar (parameter OPTIMAL_NV_HT) and the Variox Heater will remain off.

Note that when crossing 2 K, the Mercury will automatically switch the main reference sensor (i.e. from RuO at low temperatures to Cernox for the high temperatures).

Note also that the switching from the LOW TEMP to the HIGH TEMP regime will result to a slight overshoot of the temperature.

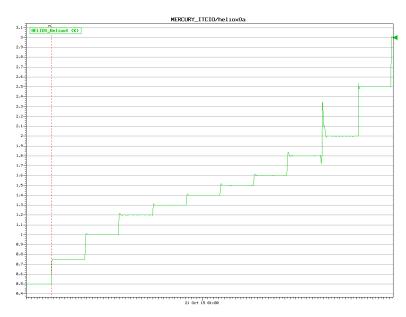


Figure 5: Typical temperature overshoot when going from the LOW TEMP to the HIGH TEMP regime.

In this temperature range, the setpoint can be changed back and forth as desired.

3.4 Going above 15 K

When going above 15 K, the Mercury will keep the status of the Heliox to HIGH TEMP, but the exchange gas trapped in the charcoal will slowly begin to be released. Therefore a temperature gradient can exist between the ³He-pot and the sample which will also be cooled by the exchange gas.

So, one also has to change the temperature of the Variox (VTI) to minimize this gradient.

- Set a new setpoint for the Heliox and the Variox (use the same setpoints) rather in Deltat or in an autorun sequence (see section 5).
- The Mercury will automatically set the temperature of the sorption pump to 15 K (parameter He3_SORB_HT_CONTR). This is done to have some ³He gas available for thermal link.
- The Mercury will servo-control the heater located at the He-pot to reach the desired temperature.
- The pressure setpoint for the VTI will be set to 5 mbar (parameter OPTIMAL_NV_HT) and the Variox Heater will be at this point automatically turned off.
- To switch ON the Variox Heater:

Interactively:

In the tab Modify Devices choose the Heliox entry and hit the buttons Modify. In the pop-up window hit the button More.... Be sure that the Variox Heater % Power reports AuthoHeater. If it reports AuthoHeater OFF, switch the heater ON with the buttons Variox HtrMode.

Remember to perform that each time you change the temperature setpoint.

In an Autorun sequence:

Within an autorun sequence, a change of the setpoint in this regime will be given as: SET HELIOX 20 $1.0\ 120\ 20\ 0.5\ 120\ 1$

- where the 3 first parameters correspond to the setpoint (20 K), temperature tolerance (+/-1 K) and waiting time (120 sec within tolerance) for the ³He-insert,
- the next 3 parameters are the the setpoint (20 K), temperature tolerance (+/-0.5 K) and waiting time (120 sec within tolerance) for the Variox,
- and finally the 7th parameter is the control of the Variox Heater (1: Heater ON).

3.5 Coming back to below 2 K (parameter REGEN_ABOVE)

When the Heliox is set at a temperature above 2 K (i.e. in the HIGH TEMP Mode) and if a new setpoint below 2 K is given, then the system will automatically recondense and finally go to the desired temperature.

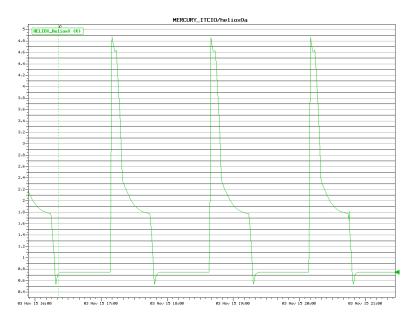


Figure 6: Cycles performed to obtain Field-Cooling conditions on a superconductor. The cycles were performed between 0.75 and 4.5 K. Note that when the setpoint was changed from 4.5 to 0.75, the system automatically recondensed and finally settle to the new stpoint were a run was performed.

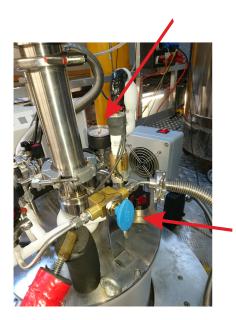
4 SAMPLE CHANGE

As one should remove the Heliox Cryostat from the Variox Cryostat in order to change the sample, one has to note that the sample change can be painful and takes about 5 hours.

4.1 Removing the Heliox cryostat from the Variox cryostat

- 1. Put the Variox temperature higher than 80 K (see Section 3.4) and wait until the Variox reaches this temperature.
- 2. Close the Dolly beamline valve either manually (by pressing a button on the touch screen located at the entrance of the area) or remotely from a computer (pc9573).
- 3. Go into the area and disconnect the Heliox insert cables and place the crane chop over the Heliox. The strap must be loosely tensioned.

Figure 7


Figure 8

4. Disconnect the Helium balloon (small line) and replace it with the corrugated tube.

Figure 9

- 5. Open the lower clamp of the sample chamber.
- 6. Carefully fill the IVC with helium gas until ambient pressure. Be sure to monitor constantly the available manometer.

7. As soon as the ambient pressure is reached, slightly pull the Heliox out of the Variox with the crane. For this, center the Heliox with one hand using glove and operate the crane at slow speed with the other hand.

Immediately interrupt the process in case the Heliox get stuck.

Figure 10

- 8. Close the opening of the Variox with the blind flange insert.
- 9. Stop immediately blowing He-gas in the Variox.
- 10. Slid a KF50 O-ring over over the Heliox before inserting it in the Service Frame. Then fix the Heliox with a KF50 clamp to the Service Frame.

Figure 11

- 11. Connect the corrugated tube of the turbo pump unit. Pump the line before opening the vent valve to the Heliox sample chamber.
- 12. The ⁴He gas contained into the balloon may now be transferred to the Heliox by opening the appropriate valve. This gas is used to impede water condensation when venting the Heliox sample space. Only after breaking the isolation vacuum a warm up of the Heliox is possible

16

Figure 12

13. One can warm up the sample area with the hair dryer installed on the service frame.

4.2 Opening the Heliox sample space

One should use the special two part clamp.

1. Tighten the screws on the bracket.

The tail should be held with one hand to prevent a bending of the Heliox.

 $Figure\ 13$

2. Spread the brackets using the bolts and pull off the tail. The Tail should be held with one hand in order to prevent it to a fall down.

Figure 14

4.3 Cleaning the seal

1. Carefully remove the old still adherent red sealing paste.

One can use his fingernails (this works very well) or, alternatively, a plastic part as a scraper (or with some ethanol).

Sandpaper or harder object should never be used.

Note that if you heat too much the sealing when removing the condensed ice, the cleaning process will be difficult.

Figure 15

2. Check the inner part, it sometimes happens that some sealing fall down and adhere there. If there are some, remove them as they may create a touch during the cooling and prevent a proper condensation of the ³He.

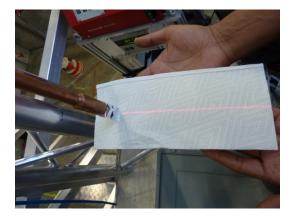


Figure 16

4.4 Sample change, check list

- 1. Change your sample
- 2. Check the alignment of the sample by using the laser at the top of the Heliox.

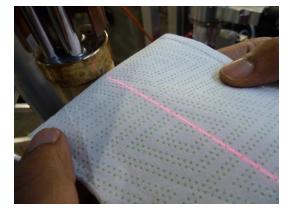
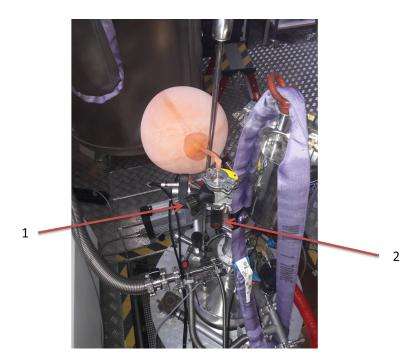


Figure 17

- 3. Check if the mark at the top of the sealing cone is clearly defined. If not renew it.
- 4. Carefully clean the opening of the red paste tube (CAF-paste) from any hard residue.

Figure 18

- 5. Coat the upper half of the sealing cone with a layer of approximately 3 mm thick CAF-paste.
- 6. Set up the tail by aligning the marks on the tail and at the top of the sealing.

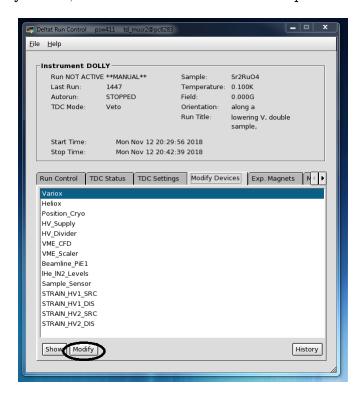

Figure 19

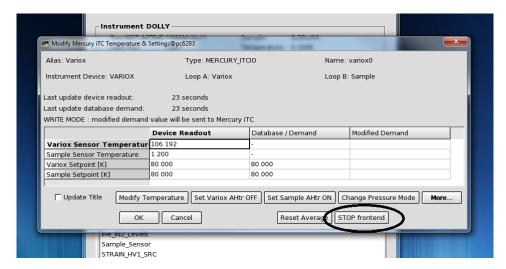
- 7. Be sure that the valve for the balloon is closed and turn the vacuum pump on.
- 8. Open the main vacuum valve and pump the $^3{\rm He}$ -insert until the seal is completely dried (about 30 min).

Note that the position 309 of the turbo pump unit indicates the speed of the pump rotator.

4.5 Inserting the Heliox into the Variox

- 1. Do not forget to close the Heliox valve and to disconnect the corrugated line of the turbo pump from the Heliox. One can disconnect it at the T connection with the Helium balloon.
- 2. Bring the Heliox close to the sample space using the crane.
- 3. Open the lower clamp of the sample chamber.
- 4. Fill the Variox IVC carefully using He gas.
- 5. Once He-gas start blowing out of the O-ring, remove the blind flange insert and replace it with the Heliox carefully using the crane.
- 6. Immediately stop blowing He-gas and remove some of it with the avilable pump and the 3-way valve (leave about 100 mbar).
- 7. Reconnect the electrical cable.
- 8. Replace the remaining corrugated tube with the Helium balloon connected to the manometer.

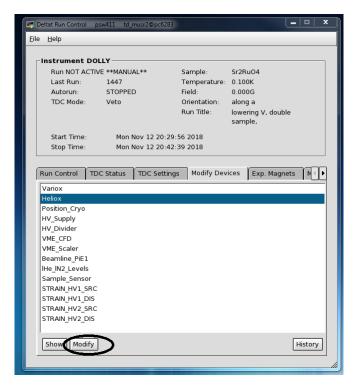


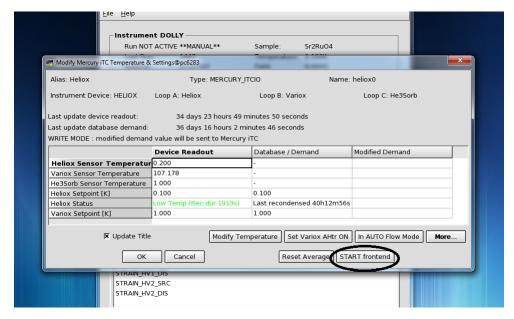

- 9. In order to have a thermal coupling at high temperature one has to introduce about 1 cm³ of ⁴He exchange gaz. One can try to blow a little bit of the ⁴He contained in the balloon before opening the Heliox valve in order to to evacuate the air trapped inbetween the valves. Then, in order to add some exchange gaz, open the valve of the Helium balloon (labeled 1 in the above picture) and close it. Then open the Heliox valve (labeled 2) and close it. The ³He Pot temperature should decrease faster.
- 10. Open the Dolly beamline and start the condensation process (Section 3.1).

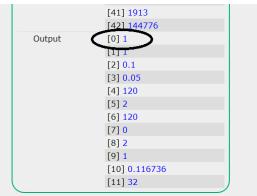
4.6 Going from Variox mode to Heliox mode

If the previous experiment was done in the Variox mode and you need to use the Heliox, you have to use the following procedure to go from Variox mode to Heliox mode:

- 1. Mount the sample in the Heliox.
- 2. If the sample space extension from Heliox to Variox is in place take it out and insert the Heliox in the Variox as explained above.
- 3. Stop the frontend of the Variox. For this, in Deltat go to Modify Devices then to Variox and click on Modify. Then, in the new window click on Stop Frontend.

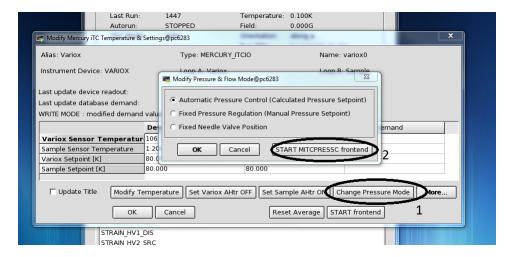



- 4. Stop the Mercury ITC of the Variox.
- 5. Turn the three knobs at the Mercury ITC from Mercury Variox only (up) to Mercury Variox/Heliox (down).



- 6. Start the Mercury ITC of the Heliox. After short waiting time (between 1 and 5 minutes) the needle valve should begin to close and the Helium flow should go to 0 L.min⁻¹.
- 7. Once the Heliox Mercury ITC is fully started, start the frontend of the Heliox. For this, in Deltat go to Modify Devices then to Heliox and click on Modify. Then, in the new window click on Start Frontend.

- 8. Check that the communication between Deltat and the heliox Mercury ITC is good.
 - Change the Heliox temperature on Deltat to 10 K and check that the temperature setpoint is changed in the Mercury ITC window.
 - If the temperature setpoint is not changed you need to enable the communication directly on the Midas data base.
 - In a browser inside PSI network go to http://psw411:8082/Equipment/heliox0/Variables
 - Check the output value for the number [0] which represents the connexion. If it is 0, click on 0 and change it for 1.
- 9. Proceed to the initial cooldown:)

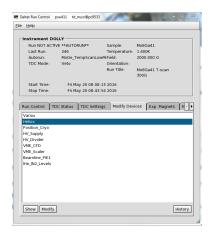


4.7 Going from Heliox mode to Variox mode

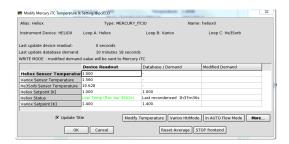
If after your Heliox experiment you want to use the Variox alone you need to use the following procedure :

- 1. Take the Heliox out of the Variox and dismount the sample.
- 2. Prepare your sample on the Variox sample stick, put back the sample place extension from Heliox to Variox and insert the sample stick as explained in the Variox Manual.
- 3. Stop the frontend of the Heliox. For this, in Deltat go to Modify Devices then to Heliox and click on Modify. Then, in the new window click on Stop Frontend.
- 4. Stop the Mercury ITC of the Heliox
- 5. Turn the three knobs at the Mercury ITC from Mercury Variox/Heliox (down) to Mercury Variox only (up).
- 6. Start the Mercury ITC of the Variox. After short waiting time (between 1 and 5 minutes) the needle valve should begin to close and the Helium flow should go to 0 L.min⁻¹.
- 7. Once the Variox Mercury ITC is fully started, start the frontend of the Variox. For this, in Deltat go to Modify Devices then to Variox and click on Modify. Then, in the new window click on Start Frontend.

8. Check that the needle valve is being controlled by the **Mercury ITC** changing the **Variox** nad **sample** temperatures. If the needle valve opens proceed to the next step otherwise do the following:


- Click on Change Pressure Mode.
- Check that the MITCPESSC frontend is started in the pressure mode. If not click on START MITCPESSC frontend
- If this is not working, change the mode to Fixed Pressure Regulation and change then the pressure setpoint value in the Modify Temperature panel.
- If this is not working, change the pressure mode to Fixed Needle Valve Position and change the pressure setpoint value in the Modify Temperature panel. You have to set a different value of the pressure setpoint (or needle valve setpoint) every time in order for it to be communicated to the Mercury ITC
- Note that the communication between Deltat nad the Mercury ITC can take few minutes. If this is not working try again several times to change the pressure mode.
- If this is not working after 15-20 minutes, you have to check directly if the needle valve is electrically connected.
- 9. start your experiment:)

5 HOW TO SET THE DESIRED TEMPERATURE FROM Deltat


5.1 Interactively

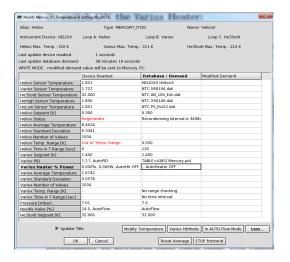
5.1.1 Up to 15 K

Up to 15 K the Variox temperature does not have to change. In order to change the temperature one has to open Deltat and to go the the Modify Devices tab. Then choose Heliox and click on Modify.

Then one has simply to modify the Heliox Temperature at the desired setpoint.

The Mercury will then take care of the pressure parameters by itself as explained in section 3.

5.1.2 Above 15 K


Above 15 K one has to heat the Variox in order to avoid a temperature gradient on the sample. First open Deltat and to go the the Modify Devices tab. Then choose Heliox and click on Modify. Put the same temperature for the Heliox and the Variox and click on the button OK. Then one has to click on the Variox HtrMode button to put the Variox heater in automode. One can check the status of the autoheater cliking on the More ... button.

Remember to perform that each time you change the temperature setpoint.

The temperature for the Heliox can go up to 50 K.

5.2 In an Autorun Sequence

In an Autorun Sequence, the parameters of the Heliox are changed with the command

SET Heliox

which can have up to 11 parameters... with the syntax:

```
SET Heliox <ATeSP> <ATemRa> <ATimRa> <BTeSP> <BTemRa> <BTimRa> [<BAutoH> <PrSP> <AutoNV> <NVSP> <CTeSP> ] **! -1 may be set when a value should not change
```

The first three parameters account for the Heliox temperature setpoint, range and waiting time. The next three parameters account for the Variox temperature setpoint, range and waiting time. The seventh parameter is the Variox autoheater mode. 0 means that the autoheater is off and 1 that it is on. The last four parameters account for the pressure and needle valve setpoint. Usually one does not have to change those parameters as the Mercury takes care of them.

5.2.1 Up to 15 K

As the Variox temperature does not have to change between base temperature and 15 K you only have to change the first 3 parameters. For example :

```
SET Heliox 3.0 0.2 120 WAIT Heliox inrange 1800
```

will set the Heliox temperature to 3.0 K within a range of 0.2 K with a waiting time of 120 s. The second line is here to ensure that the temperature reach 3.0 K within the asked range for at least 120 s. If this temperature is not reached before 1800 s the sequence will proceed anyway (one can note that this line is not compulsory).

5.2.2 Above 15 K

As the Variox temperature need to be changed above 15 K you have to change the first 7 parameters. For example :

```
SET Heliox 30.0 0.5 120 30.0 0.5 120 1 WAIT Heliox INRANGE 1800
```

will set the Heliox and Variox temperature to 30 K within a range of 0.5 K with a waiting time of 120 s. Further the Variox autoheater (parameter number 7) is turned on.

Remember to always set 1 for the 7th	parameter at each temperature in this mode	€.
	29	

6 EXAMPLE AUTORUN COMMANDS

```
Set magnetic field in WEU to 1000 gauss and wait 120 seconds.
SET expmag WEU 1000.0 120
   Start data taking. Here 3000000 events are taken on the detector number 2 (Backward)
START Histogram 2 3000000
   Set magnetic field in WEV to 100 gauss and wait 120 seconds.
SET expmag WEV 100 120
   Set magnetic field in WEV to 0 gauss and wait 120 seconds.
      - this procedure is required for the true zero field measurement
SET expmag WEV 0 120
START Histogram 2 3000000
   Set position of the whole cryostat to 11 mm.
SET Position_Cryo HUB 11 120
   Set temperature for the Variox and on the sample to 30 K
#
        within a range of 0.5 K, and the minimum time in the range of 120 s.
#
   One can note that in this case the command for a temperature above 15 K is used.
SET Heliox 30 0.5 120 30 0.5 120 1
   To actually wait for the temperature to be in a range, WAIT command
                      If the requested temperature is not reached within
   has to be used.
   7200 seconds, the sequence will proceed anyway.
WAIT Heliox INRANGE 7200
START Histogram 2 3000000
#
   Set temperature for T lower than 15 K.
   Set temperature of the sample to 0.5 K within a range of 0.01 K
#
        with a minimum time in the range of 120 s.
SET Heliox 0.5 0.01 120
   To actually wait for the temperature to be in a range, WAIT command
                      If the requested temperature is not reached within
   has to be used.
   7200 seconds, the sequence will proceed anyway.
WAIT Heliox INRANGE 7200
START Histogram 2 3000000
   Set the slits to 130 and wait 120 seconds
SET Beamline_PiE1 FS51-0 130
SET Beamline_PiE1 FS51-U 130
SET Beamline_PiE1 FS51-L 130
SET Beamline_PiE1 FS51-R 130 120
```

7 HOW TO CHECK THE PARAMETERS AND ANALYZE THE DATA

7.1 How to check the different parameters

There is three different possibility to check the stability of the different parameters (temperature, pressure, field ...).

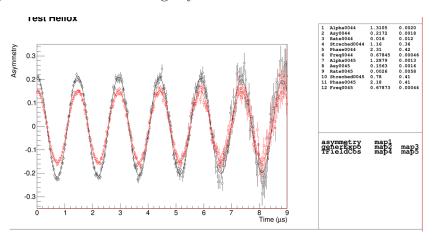
- i) Check directly in Deltat going to Modify Devices and click the Show button.
- ii) On an internet browser go to the history of Dolly, http://psw411:8081/HS/All and check the desired parameter.
- iii) For the temperature, one can also directly check the Mercury with the camera installed in the experimental area going to this address: http://musr-dolly-4/view/index.shtml

7.2 How to directly analyze the data

Due to trouble for maintaining the last version of the PSI software in every machine, no analyzing program is directly installed in pc8575. To analyze directly your data with this computer you have to be connected to the virtual machine musruser under the name l_musr_tst. To do so, open the console and write

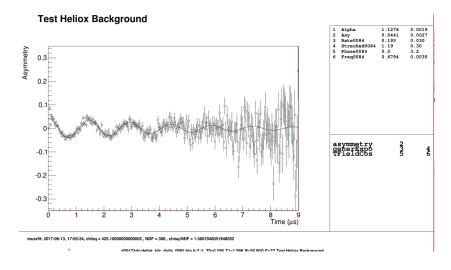
ssh l_musr_tst@musruser

you can ask the password to a member of PSI staff.

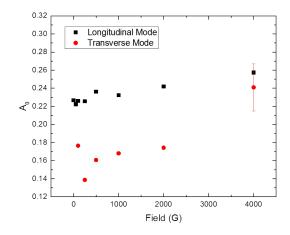

Once you are logged, you can create a folder at your name and work within it using musredit and musrfit. A manual for this program can be found on the internet: http://lmu.web.psi.ch/musrfit/user/MUSR/MusrFit.html

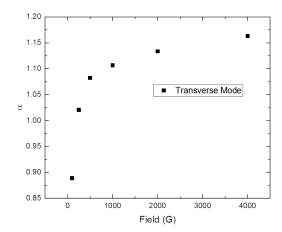
The novellook program can also be used with this virtual computer.

8 HELIOX CHARACTERISTICS

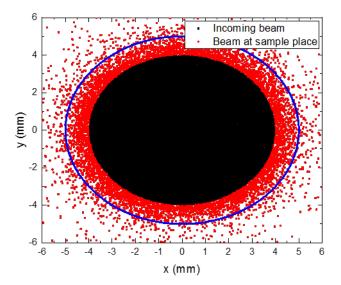

8.1 Initial Asymmetry

In this part we describe the expected initial asymmetry in the Heliox both in longitudinal (black) and transverse (red) polarization under a transverse field of 50 G. We found $A_0^{\text{long}} = 0.217(2)$ and $A_0^{\text{trans}} = 0.156(2)$. One has to keep in mind that as we had to apply a transverse field of 50 G the initial asymmetry in zero field can be slightly different.


8.2 Background


The background was estimated with a 4×4 mm Ni piece. We found for this sample a background of 0.044(3). If one assume a beam size of 8 mm diameter, therefore for a full coverage of the sample one can expect a background lower than 0.014(1).

8.3 WEU Field effect


The Initial asymmetry and alpha value can change when you apply a strong field. We put here an example of this effect in longitudinal and transverse polarization for a silver plate.

8.4 Beam size simulation at the sample place

To simulate the beam size at the sample we used the SRIM simulation package which can be downloaded at http://www.srim.org. We simulate the incoming beam to be circular with a diameter of 8 mm and an incident angle of -1° as expected for the beam before the M counter. We took into account the M counter, Mylar foil and Ti windows to simulate the Heliox cryostat. The results are given in the figure above, the blue circle represent a circle of 10 mm diameter which encloses the majority of the beam at the sample space.

