New μ E4: vertical beam shift at the end of the beamline due to horizontal tilting of WSX

T. Prokscha, LMU, PSI

August 14, 2002

Considering the beam line vertically as a simple drift the total vertical shift Δy of the beam for an initial vertical deflection ϕ_{tot} due to the two solenoids WSX61 and WSX62 is given by

$$\Delta y = \phi_{tot} \cdot L = (\phi_{WSX61} + \phi_{WSX62}) \cdot L, \tag{1}$$

where L is the total length of the beam line, and ϕ_{WSX61} and ϕ_{WSX62} are the vertical deflection angles of WSX61 and WSX62, respectively.

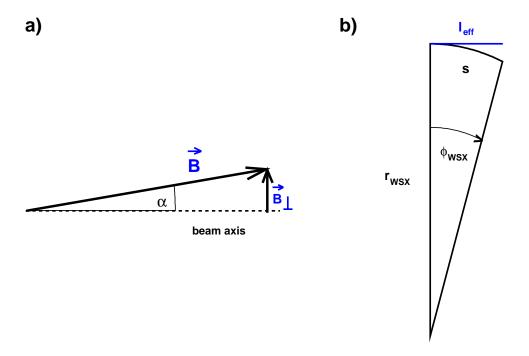


Figure 1: a) Magnetic field component B_{\perp} due to horizontal tilting of WSX by an angle α . B_{\perp} causes a vertical deflection (out of the plane of view) of the beam. b) Vertical deflection angle ϕ_{WSX} and radius r_{WSX} of the central trajectory. For small ϕ_{WSX} the arc length s equals to good approximation the effective length l_{eff} of the WSX solenoid.

The deflection angle ϕ_{WSX} is given by

$$\phi_{WSX} = \frac{s}{r_{WSX}} \simeq \frac{l_{eff}}{r_{WSX}},\tag{2}$$

see Fig. 1. The radius r_{WSX} of the central trajectory is determined by the particle momentum p and the magnetic field B_{\perp} :

$$r_{WSX} = \frac{p}{e \cdot B_{\perp}} \simeq \frac{p}{e \cdot \alpha \cdot B}.$$
 (3)

Inserting Eq. (3) in (2) and Eq. (2) in (1) yields finally for the vertical deflection of the central trajectory at the end of the beam line

$$\Delta y = (B_{WSX61} + B_{WSX62}) \times \frac{e \cdot \alpha \cdot l_{eff} \cdot L}{p} \tag{4}$$

$$= 0.03 \times (B_{WSX61} + B_{WSX62}) \times \frac{\alpha \cdot l_{eff} \cdot L}{p}$$

$$[B] = kG, [\alpha] = mrad, [l] = m, [p] = MeV/c.$$

$$(5)$$

The following table gives an overview on the total bending angle $\phi_{tot} = (\phi_{WSX61} + \phi_{WSX62})$ of the two WSX and the vertical shift Δy of the beam at the channel end point for different tilt angles α . The effictive length of each WSX solenoid is 0.666 m, $B_{WSX61} = 2.6$ kG, $B_{WSX62} = 1.35$ kG, p = 28 MeV/c and L = 18 m.

α	$\phi_{tot} = (\phi_{WSX61} + \phi_{WSX62})$	Δy
0.1 mrad (= 0.1 mm / 1m)	$0.28 \mathrm{\ mrad}$	0.005 m
0.2 mrad (= 0.2 mm / 1m)	$0.56 \mathrm{mrad}$	$0.010 \mathrm{m}$
0.5 mrad (= 0.5 mm / 1m)	1.41 mrad	$0.025~\mathrm{m}$
1.0 mrad (= 1.0 mm / 1m)	2.82 mrad	$0.051~\mathrm{m}$

The deviation of the beam center should be less than 5 mm in the area which requires the WSX axis to coincide with the beam axis by better than 0.1 mrad! The vertical beam steering proposed by D. George (current flowing asymmetrically through the first three QSM's) possibly can help if there are any problems with the adjustment of WSX. The vertical deflection angle is estimated to 6.5 mrad at 10 A additional current in two of the four QSM coils. However, since we do not know how the steering with the QSM's will work it's better to try to adjust horizontally the WSX axis to ≤ 0.1 mrad with respect to the beam axis.