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Angle calculations for a (2+3)-type diffractometer are presented with

comprehensive derivations for both cases of either a vertical or horizontal

sample configuration. This work focuses on some particular aspects of using area

detectors in surface X-ray diffraction, namely the role of the detector rotation

and the direct conversion of the angle-resolved diffraction signal recorded by

the detector into a two-dimensional slice through reciprocal space.

1. Introduction

Over the past few decades, a number of different diffract-

ometer types have been developed to study single crystals

using neutrons or X-rays in general and single-crystal surfaces

and thin-film systems in particular; the choice of a specific

geometry is largely based on the required experimental

conditions. A brief overview of the different types used in

surface X-ray diffraction (SXRD), their relative merits and

drawbacks, and their classification has been given by Bunk &

Nielsen (2004).

With very few exceptions, modern surface diffractometers

can be grouped into two categories. The z-axis-type instru-

ments have coupled detector and sample circles in conjunction

with a rotation stage for the entire instrument (Bloch, 1985;

Lohmeier & Vlieg, 1993). The vertical-axis diffractometers, on

the other hand, feature completely independent detector and

sample circles. The (2+2)-type diffractometer (Hung, 1992;

Evans-Lutterodt & Tang, 1995; Renaud et al., 1995) provides

two sample and two detector rotations. Adding an additional

two degrees of freedom for the sample orientation, the (4+2)-

type instrument (Takahasi & Mizuki, 1998; You, 1999)

provides more flexibility and versatility, albeit at the cost of

mechanical complexity. In contrast, the (2+3)-type diffract-

ometer (Vlieg, 1998) introduces an additional detector rota-

tion to the (2+2) configuration, which combines many of the

advantages of the z-axis- and (2+2)-type geometries.

In this article, we present a comprehensive derivation of the

angle calculations as implemented for the Newport (2+3)-type

diffractometer of the Materials Science Beamline X04SA at

the Swiss Light Source (SLS), including both the vertical and

the horizontal sample configurations.

Based on these calculations, we then focus on some parti-

cular aspects regarding the use of area detectors in SXRD.

Firstly, the role of the detector rotation is discussed, specifi-

cally in view of using area detectors in a stationary mode

(Specht & Walker, 1993; Vlieg, 1997; Schlepütz et al., 2005),

where the total diffracted signal and background are captured

in a single exposure. A new detector rotation mode is intro-

duced which significantly facilitates the intensity integration

and efficiently reduces scattering background not originating

from the sample position. Secondly, the conversion from pixel

coordinates to reciprocal-space positions is discussed in detail.

The angle-resolved scattering pattern on the detector is

transformed into a curved two-dimensional slice through

reciprocal space. By collecting many such slices, three-

dimensional reciprocal-space maps can be reconstructed from

a single scan (Schmidbauer et al., 2008; Mariager, Lauridsen et

al., 2009). Optimal sampling of reciprocal space is achieved by

scanning along the reciprocal-space direction normal to the

surface of the Ewald sphere (kout).

Although all calculations in this article are performed

specifically for the (2+3)-type diffractometer, the presented

concepts are generally applicable to any diffractometer

geometry.

2. Experimental setup

2.1. The (2+3)-type surface diffractometer

The Newport (2+3) circle diffractometer is shown schema-

tically in Fig. 1. The naming conventions for the instrument

circles follow those used by Vlieg (1998). The diffractometer

provides two degrees of freedom for the sample motion and

three for the detector. The � and � circles are used to position

the detector in the direction of the diffracted X-ray beam, kout,

while the �-axis rotation allows the detector and the slit system

attached to it to turn around kout.

For a (2+3)-type instrument, the two sample circles are fully

decoupled from the detector circles. This allows for two

alternative modes of operation, mounting the sample either in

the vertical or in the horizontal scattering geometry. In the

vertical geometry (blue in the electronic version of the paper,
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dark shading in the print version, see Fig. 1), the sample

surface plane is vertical, and hence its surface normal direction

lies in the horizontal plane. The grazing-incidence angle of the

synchrotron beam onto the surface is adjusted using the �
circle, while !v provides the azimuthal sample rotation around

the surface normal. When using the horizontal geometry (red

in the electronic version of the paper, light shading in the print

version), the sample surface is approximately horizontal with

the surface normal pointing upwards. Here, ’ and !h deter-

mine the grazing angle and azimuthal orientation, respectively.

(In this geometry, the � circle is only used to align the !h axis

with the � axis, and is kept fixed during the rest of the

experiment.) Both geometries have their relative merits and

drawbacks with regard to exploiting the beam polarization,

maximizing the experimental resolution or the use of heavy

sample chambers. Which mode should be used therefore

depends on the demands of the experiment.

Six additional sample degrees of freedom (three transla-

tions and three rotations) are provided by a hexapod,

mounted onto the !v (vertical) or ’ (horizontal) sample circle.

The three linear motions are used to bring the sample centre

into coincidence with the diffractometer centre. The sample

surface normal is accurately aligned with the diffractometer’s

azimuthal sample rotation axis (!v in the vertical and ’ in the

horizontal geometry) using the hexapod rotations. All angle

calculations require this coincidence of sample surface normal

and azimuthal rotation axis, so once the sample is accurately

aligned, the hexapod positions are fixed for the rest of the

experiment.

Of particular note are the two different laboratory coordi-

nate frames for the horizontal and vertical scattering geome-

tries: they have both been chosen such that the incoming

synchrotron beam points in the positive y direction and the

sample surface normal at 0� grazing-incidence angle lies along

the z axis.

2.2. The PILATUS 100K pixel detector

The standard detector used in the setup is a PILATUS 100K

single-module pixel detector. Its characteristics have been

described in detail elsewhere (Schlepütz et al., 2005; Berga-

maschi et al., 2007; Kraft, Bergamaschi, Brönnimann, Dina-

poli, Eikenberry, Graafsma et al., 2009; Kraft, Bergamaschi,

Broennimann, Dinapoli, Eikenberry, Henrich et al., 2009;

Sobott et al., 2009). Briefly, it is an X-ray single-photon-

counting hybrid pixel detector with an energy range of 3–

30 keV and a dynamic range of 220 ’ 106 pixel�1. The module

consists of 487� 195 pixels with a pitch of 172� 172 mm each,

resulting in a total active area of 83.8 � 33.5 mm. The short

readout time of 2.7 ms allows for frame rates of up to 300 Hz,

and a variable high-pass energy threshold with a bandwidth of

circa 500 eV can be used to suppress unwanted inelastic

scattering signals (e.g. fluorescence background).

The detector is mounted on the � axis at a distance

R = 1140.8 mm from the centre of the diffractometer,

thus subtending an angular range of 4.205 � 1.684�

(0.0086� pixel�1). A set of guard slits attached to the � axis can

be brought close to the sample to limit the detector’s field of

view. There are currently no detector slits directly in front of

the pixel detector since the slitting operation can be

performed digitally by selecting corresponding regions of

interest in the detector images.

3. Angle calculations

Angle calculations for the (2+3)-type diffractometer are

presented for both the vertical and the horizontal sample

geometry. Because the detector rotation around the � axis

does not affect the direction of the observed scattering vector

for the particular point of the detector lying on the rotation

axis, it does not enter the angle calculations directly. For this

reason, the derivations are essentially identical to those

published by Evans-Lutterodt & Tang (1995) for the (2+2)

surface diffractometer in the vertical geometry, but will be

reproduced here for completeness, using the appropriate

rotations for our particular setup. These results will be

essential to discuss a new mode for the detector rotation

relevant when using an area detector in x4, and to calculate the

direct relation between pixel coordinates and reciprocal-space

positions to obtain reciprocal-space maps (RSMs) from a

single detector image in x5.

3.1. Basic equations

Consider a crystal lattice defined by three lattice vectors ai

(i ¼ 1; 2; 3) of length ai ¼ ai

�� ��, and the three lattice angles �i

between them. The corresponding reciprocal lattice is spanned
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Figure 1
Schematic of the Newport (2+3) circle diffractometer with all circles
shown at their zero positions. The two sample circles can be configured in
one of two alternative modes. (i) In the ‘vertical geometry’ (blue, or dark
shading in the print version of the paper), the sample surface lies in a
vertical plane, hence the surface normal is horizontal. Here, !v and �
provide the azimuthal and polar degrees of freedom, respectively. (ii) In
the ‘horizontal geometry’ (red, or light shading in the print version of the
paper), the sample surface is kept approximately horizontal, while the
surface normal points upwards. The azimuthal and polar rotations are
now provided by the ’ and !h circles. The detector has three degrees of
freedom: � and � are used to position the detector in the direction of the
diffracted X-ray beam, while the � axis provides a rotation of the detector
around this direction. All rotation axes intersect at the diffractometer
centre (DC).



by the vectors bi with angles �i. Any vector H in reciprocal

space can be written as

H ¼ hb1 þ kb2 þ lb3; ð1Þ

with reciprocal-space coordinates hkl.

To obtain a description independent of a particular crystal

lattice, it is necessary to convert the reciprocal-space vector H

from the crystal or surface coordinate system to an ortho-

normal coordinate system attached to the crystal lattice

(Busing & Levy, 1967). Conventionally, the x axis of this

Cartesian coordinate system is chosen along b1, y inside the

plane of b1 and b2, and z perpendicular to that plane. This

leads to the transformation

Hc ¼ B H; ð2Þ

where the subscript ‘c’ denotes the Cartesian coordinate

system, and B is given by Busing & Levy (1967):

B ¼

b1 b2 cos �3 b3 cos�2

0 b2 sin �3 �b3 sin �2 cos �1

0 0 2�=a3

0
@

1
A: ð3Þ

Note that this formula differs from the original by Busing &

Levy (1967) by a factor of 2� in Bð3; 3Þ. This depends on the

particular convention to define the reciprocal-lattice vectors,

where we use the ‘physics’ definition,

aibi ¼ 2�; aibj ¼ 0 8 i; j 2 1; 2; 3; i 6¼ j; ð4Þ

rather than the ‘crystallographic’ definition, where aibi ¼ 1.

This crystal Cartesian coordinate system can be related to

another orthonormal coordinate system, the ! system (’
system), which has its z axis rigidly aligned with the diffrac-

tometer’s azimuthal sample rotation axis !v (’) in the vertical

(horizontal) geometry through an additional rotation of the

crystal, represented by the orthogonal rotation matrix U, such

that

H’=! ¼ U Hc ¼ UB H: ð5Þ

U is the so-called orientation matrix and depends on the way

the crystal is oriented on the diffractometer. U is not known a

priori, but can be determined through the measured angular

positions of two known reflections (Busing & Levy, 1967;

Shoemaker & Bassi, 1970). A very practical and common

alternative which may yield a more stable orientation is to

apply a linear least-squares fit for the entire UB matrix using

more than three measured reflections with known hkl indices

(Busing & Levy, 1967). Note, however, that this method will

also change the lattice constants and angles, invariably

resulting in a slightly distorted, triclinic lattice. Various ways of

constraining some of these parameters to known values (i.e.

the lattice angles for a known crystal symmetry) generally lead

to nonlinear optimization problems which need to be solved

iteratively (Busing & Levy, 1967; Shoemaker & Bassi, 1970;

Shoemaker, 1970; Ralph & Finger, 1982). A further option is

to assume that the unit cell remains unchanged, and only the

three orientational degrees of freedom in U need to be

refined. Using standard (3� 3) rotation matrix notation, this

results in a nonlinear set of equations. However, by employing

quaternion algebra, this problem is reduced to a linear least-

squares fit again which can be solved analytically (Mackay,

1984; Clegg, 1984) for two or more known reflections.

With all diffractometer positions set to zero, the H’=!-axis

system coincides with the corresponding laboratory frame of

reference fx; y; zg, shown in Fig. 1.

Given our choice of laboratory coordinates (x2.1), and using

units of 2�=�, where � is the X-ray wavelength, the incoming

wavevector has a magnitude equal to unity and can be

expressed as

kin;lab ¼

0

1

0

0
@

1
A: ð6Þ

The diffraction condition is then given by

Hlab ¼ kout;lab � kin;lab ¼

X

Y

Z

0
@

1
A: ð7Þ

(X;Y;Z) is the momentum transfer in the laboratory frame

fx; y; zg. Since we are concerned here with elastic scattering

processes, the magnitude of the outgoing wavevector is equal

to that of the incoming wavevector, and its direction is given

by the position of the detector, defined by the detector circles

� and �.
The effect of a rotation of one of the diffractometer circles

is described through a rotation matrix, defined in the appro-

priate coordinate system. Usually it is most convenient to use

the laboratory frame of reference to express the rotations,

since the rotation axes are normally aligned with one of the

coordinate axes. Note, however, that under these circum-

stances, the order of applying the rotations is important for

those circles that are mechanically coupled, as spatial rotations

are non-commutative in general. Consider, as an example, a

rotation of the detector arm using the � and � circles (see

Fig. 1). By rotating the � circle, the � axis is no longer oriented

along the laboratory’s z axis and hence the form of the rota-

tion matrix needs to be modified. Applying the � rotation first,

however, has no effect on the orientation of the � axis, and

both rotations can be described in the laboratory frame of

reference.

3.2. Vertical geometry

The relevant rotation matrices for the vertical geometry are

the following:

� ¼ Rxð�Þ ¼
1 0 0

0 cos � � sin �
0 sin � cos �

0
@

1
A; ð8Þ

A ¼ Rxð�Þ ¼
1 0 0

0 cos � � sin �
0 sin � cos �

0
@

1
A; ð9Þ
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� ¼ R�z ð�Þ ¼
cos � sin � 0

� sin � cos � 0

0 0 1

0
@

1
A; ð10Þ

�v ¼ R
�
z ð!vÞ ¼

cos!v sin!v 0

� sin!v cos!v 0

0 0 1

0
@

1
A: ð11Þ

Note that � and �v represent left-handed rotations around the

laboratory z axis (indicated by the minus sign in R�z ).

Writing I for the identity matrix, the diffraction condition in

equation (7) can now be expressed in terms of these rotations:

Hlab ¼ kout � kin ¼ ð���� IÞ

0

1

0

0
@

1
A; ð12Þ

yielding

X

Y

Z

0
@

1
A ¼ sin �

cos � cos �� 1

sin � cos �

0
@

1
A: ð13Þ

The corresponding scattering vector H! in the ! system is

determined by the orientation of the sample stage

H! ¼

h!
k!
l!

0
@

1
A ¼ ��1

v A�1

X

Y

Z

0
@

1
A: ð14Þ

Multiplying out, we obtain

h!
k!
l!

0
@

1
A ¼ cos!v X � sin!vðcos �Y þ sin �ZÞ

sin!v X þ cos!vðcos �Y þ sin �ZÞ

� sin �Y þ cos �Z

2
4

3
5: ð15Þ

Consider Fig. 2. The momentum transfer perpendicular to the

sample surface, q?, is equal to l! in the ! system, and in units

of 2�=�, it is given by

l! ¼ sin �in þ sin �out: ð16Þ

On the other hand, combining equations (13) and (15), we see

also that

l! ¼ � sin �Y þ cos�Z

¼ � sin � ðcos � cos �� 1Þ þ cos � sin � cos �

¼ cos � ðsin � cos�� cos � sin �Þ þ sin �

¼ cos � sinð� � �Þ þ sin�: ð17Þ

Since �in ¼ �, it follows that

cos � sinð� � �Þ ¼ sinð�outÞ: ð18Þ

The (squared) magnitude of the in-plane component of H!

should not depend on !v, as this rotation is always normal to

the crystal surface. Combining equations (13) and (15) yields

h2
! þ k2

! ¼ ½cos!vX � sin!vðcos �Y þ sin �ZÞ�2

þ ½sin!vX þ cos!vðcos �Y þ sin �ZÞ�2

¼ X2
þ ðcos �Y þ sin �ZÞ

2; ð19Þ

which is indeed independent of !v.

The magnitude of H! is equal to that of Hlab and also

independent of !v. From equation (13), we obtain

h2
! þ k2

! þ l2
! ¼ X2 þ Y2 þ Z2

¼ ðsin �Þ2 þ ðcos � cos �� 1Þ2 þ ðsin � cos �Þ2

¼ 2ð1� cos � cos �Þ ¼ �2Y; ð20Þ

which yields

Y ¼ �ð1=2Þðh2
! þ k2

! þ l2
!Þ: ð21Þ

From equation (18), we know that

sin �out ¼ cos � sinð� � �Þ ¼ cos �ðsin � cos �� cos � sin �Þ

¼ cos �Z � sin �ðY þ 1Þ: ð22Þ

We rearrange this to obtain

Z ¼ ½sin �out þ sin �ðY þ 1Þ�= cos�: ð23Þ

Finally, we can solve equation (19) for X as a function of the

known Y and Z:

X ¼ �½h2
! þ k2

! � ðcos �Y þ sin �ZÞ
2
�
1=2: ð24Þ

The scattering vector components X, Y and Z in the labora-

tory frame of reference have now been expressed only in

terms of h!, k! and l! [the momentum transfer components in

the ! system, which are related to the desired components h, k

and l of H through equation (5)] and �in and �out, which are

still free variables.

We now determine the diffractometer angles �, �, � and !v

in terms of h!, k! and l!, and X , Y and Z (which, we have just

stated, can themselves be expressed in terms of h!, k! and l!,

and �in and �out). From equation (13), we directly obtain

sin � ¼ X: ð25Þ

Here, we choose the positive solution for X from equation (24)

to make the diffractometer move to positive values of �.
The expression for � is derived in the following way:

tan � ¼
sin �

cos �
¼

sin � cos �

cos � cos �
¼

sin � cos �

ðcos � cos �� 1Þ þ 1
ð26Þ
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Figure 2
Scattering triangle in the vertical geometry. The magnitude of the
perpendicular momentum transfer, q?, is equal to jkinj sin�in +
jkoutj sin�out.



¼
Z

Y þ 1
: ð27Þ

In order to obtain an expression for !v, we first define

ðcos�inY þ sin �inZÞ � M; ð28Þ

which we substitute into equation (15) to obtain

h! ¼ cos!vX � sin!vM

) cos!v ¼
h! þ sin!vM

X
ð29Þ

and

k! ¼ sin!vX þ cos!vM

) sin!v ¼
k! � cos!vM

X
; ð30Þ

and combining these two expressions, we obtain

sin!v ¼
k! � ½ðh! þ sin!vMÞ=X�M

X

¼
k!
X
�

h!M

X2
�

sin!vM2

X2

) sin!v 1þ
M2

X2

� �
¼

k!X

X2
�

h!M

X2

) sin!v ¼
k!X � h!M

X2 þM2
: ð31Þ

Because !v can assume values between +180 and �180�, the

sine of the desired angle alone does not suffice to determine

the angle unambiguously. So we also solve for cos!v by

inserting equation (30) into equation (29):

cos!v ¼
h!X þ k!M

X2 þM2
: ð32Þ

Combining equations (31) and (32) yields

tan!v ¼
k!X � h!M

h!X þ k!M
; ð33Þ

which, if we use a quadrant-sensitive arctangent function (such

as atan2 in standard C), unambiguously determines !v.

Finally,

sin � ¼ sin �in: ð34Þ

To calculate the diffractometer angles, we need to impose one

final constraint to determine �in and �out. We know from

equation (16) that

l! ¼ sin �in þ sin �out: ð35Þ

The three commonly used constraints on �in and �out are the

following (though others could be used as well):

(a) Fixing the incoming angle, �in ¼ �, yields

sin � ¼ sin �in;

sin �out ¼ l! � sin �: ð36Þ

(b) For a fixed outgoing angle �out, we obtain

sin � ¼ l! � sin�out: ð37Þ

(c) Requiring the incoming and outgoing angles to be equal,

�in ¼ �out, we find

sin � ¼ sin �out ¼ l!=2: ð38Þ

Inserting the appropriate constraints on �in and �out from

equations (36), (37) or (38) into our expression for X, Y and Z

[equations (24), (21) and (23), respectively] and then using

these to evaluate equations (25), (27), (31) and (34), we are

then able to compute �, �, !v and �, respectively.

3.3. Horizontal geometry

The angle calculations for the horizontal geometry are

completely analogous to the vertical case. Here, the relevant

rotation matrices with respect to the horizontal geometry

coordinate system (see Fig. 1) are the following:

� ¼ Rzð�Þ ¼
cos � � sin � 0

sin � cos � 0

0 0 1

0
@

1
A; ð39Þ

� ¼ Rxð�Þ ¼
1 0 0

0 cos � � sin �
0 sin � cos �

0
@

1
A; ð40Þ

� ¼ Rzð’Þ ¼
cos ’ � sin ’ 0

sin ’ cos’ 0

0 0 1

0
@

1
A; ð41Þ

�h ¼ Rxð!hÞ ¼

1 0 0

0 cos!h � sin!h

0 sin!h cos!h

0
@

1
A: ð42Þ

The diffraction condition [cf. equation (7)] then becomes

X

Y

Z

0
@

1
A ¼ ð���� IÞ

0

1

0

0
@

1
A ¼ � sin � cos �

cos � cos �� 1

sin �

0
@

1
A; ð43Þ

and transforming this into the ’ system yields

H’ ¼

h’

k’

l’

0
B@

1
CA ¼ ��1 ���1

h

X

Y

Z

0
B@

1
CA

¼

sin ’ðcos!h Y þ sin!h ZÞ þ cos ’X

cos ’ðcos!h Y þ sin!h ZÞ � sin ’X

cos!h Z � sin!h Y

2
64

3
75 ð44Þ

Remembering that the incoming angle in the horizontal

geometry is given by �in ¼ !h, we can now construct the

expressions for X, Y and Z:

h2
’ þ k2

’ þ l2
’ ¼ X2

þ Y2
þ Z2

¼ �2Y

) Y ¼ �ðh2
’ þ k2

’ þ l2
’Þ=2: ð45Þ

Using Y, we first obtain Z:

l’ ¼ sin �in þ sin �out

¼ sin!h þ sin � cos!h � cos � sin!h cos �; ð46Þ

which leads to
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sin �out ¼ cos!h sin �� sin!h cos � cos �

¼ cos!hZ � sin �inðY þ 1Þ

) Z ¼ ½sin �out þ sin �inðY þ 1Þ�= cos!h: ð47Þ

Finally, with known Y and Z, we can solve for X :

h2
’ þ k2

’ ¼ X2
þ ðcos!h Y þ sin!h ZÞ

2

) X ¼ �½h2
’ þ k2

’ � ðcos �in Y þ sin �in ZÞ
2
�
1=2: ð48Þ

Both the positive and negative solutions for X are valid, but

often one may be preferred because of constraints in the

mechanical setup. With the given choice of laboratory coor-

dinates, a positive value of X would result in a � rotation to

negative angles (see Fig. 1). For our diffractometer setup, � is

constrained to small negative values, hence we choose the

negative solution for X to ensure a � rotation to positive

angles.

Next, we solve for the diffractometer angles �, �, ’ and !h.

From equation (43), we obtain

tan � ¼
sin �

cos �
¼
�X

Y þ 1
ð49Þ

and

tan � ¼
Z sin �

�X
: ð50Þ

Note again that the tangent depends on the individual signs of

the numerator and denominator, hence the need to use a

quadrant-specific arctangent function (atan2 in standard C).

Using the same method as in equations (29)–(32), we can

find ’:

tan ’ ¼
h’M � k’X

h’X þ k’M
; ð51Þ

where M ¼ cos �in Y þ sin �in Z.

Finally, !h is simply equal to the incoming angle �in:

sin!h ¼ sin �in: ð52Þ

The three constraints for the incoming and outgoing angles

now result in the following relations:

(a) Fixed incoming angle �in:

sin �out ¼ l’ � sin!h: ð53Þ

(b) Fixed outgoing angle �out:

sin!h ¼ sin �in ¼ l’ � sin �out: ð54Þ

(c) Equal incoming and outgoing angles �in ¼ �out:

sin �in ¼ sin �out ¼ l’=2: ð55Þ

4. Using the detector rotation

So far, we have neglected the detector rotation around the �
axis, as this has no effect on the positioning of a detector with

its active area centred on this axis, and therefore does not

affect the conversion from reciprocal-space coordinates to the

other diffractometer angles and vice versa.

The original design idea for implementing the � axis was to

merge the properties of the z-axis- and (2+2)-type geometries

(Vlieg, 1998). In particular, the �-axis rotation offers the

possibility of keeping the orientation of the detector slits

aligned with the direction of the perpendicular scattering

vector component q?, as shown in Fig. 3(a). When using

rocking scans to integrate the diffraction signal for a particular

value of q?, this slit orientation ensures a well defined

acceptance �q? and leads to a simple correction factor for the

amount of intercepted rod. The following calculation of the

required rotation in � has been presented by Vlieg (1998).

For both geometries, the �-axis rotation is described by the

following matrix (in both cases, � rotates around the positive y

axis):

N ¼ Ryð�Þ ¼
cos � 0 sin �

0 1 0

� sin � 0 cos �

0
@

1
A: ð56Þ

In the vertical geometry, at all angles zero, let x̂x� and ẑz� be two

unit vectors in a coordinate system attached to the � axis,

which are aligned with the x and z axes of the laboratory frame

of reference, respectively. Further, we will assume that the

vertical and horizontal guard slit pairs are also aligned with

the laboratory coordinate system and therefore move along

the directions of x̂x� and ẑz�.

The condition that the horizontal slits are aligned parallel

with respect to q? implies that x̂x� is always perpendicular to

the latter:

x̂x� 	 q? ¼ 0: ð57Þ

With all angles at zero, we have in the laboratory frame of

reference

research papers
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Figure 3
Two modes for the �-axis rotation. (a) The guard slits and detector are
aligned with the direction of q? by rotating � to negative values. (b) A
rotation to positive � values keeps the projection of the beam footprint
(grey parallelogram) on the sample aligned with the slits and detector
pixels and helps to effectively mask out scattering caused by the incoming
X-rays upstream or downstream of the sample (grey discs). The sample is
shown with all angles set to zero in both panels and the detector/slit
orientation is indicated by the rectangle before (green, or dashed line in
the print version of the paper) and after (red, or solid line in the print
version of the paper) the rotation. See text for more details.



q? ¼ qz

0

0

1

0
@

1
A; x̂x� ¼

1

0

0

0
@

1
A; ð58Þ

where qz is the perpendicular scattering vector component.

For non-zero angles, equation (57) becomes

ð���� N � x̂x�ÞðA� q?Þ ¼ 0; ð59Þ

and can be solved to yield

tan � ¼ � tanð� � �Þ sin �: ð60Þ

Using the same procedure for the horizontal geometry, one

finds

tan � ¼
� sin � sin!h

sin!h cos � sin �þ cos!h cos �
: ð61Þ

When using an area detector, however, there is a second mode

of operation for the �-axis rotation which proves very useful in

many cases. Rather than keeping the detector and slits aligned

with the q? direction, it may be advantageous to align them

with respect to the projection of the incoming X-ray beam,

especially when working in the open-slit geometry in a

stationary mode (Specht & Walker, 1993; Vlieg, 1997; Schle-

pütz et al., 2005). This situation is depicted in Fig. 3(b). The

relatively broad beam produced by a wiggler insertion device

typically floods the entire sample length at grazing incoming

angles, unless its width is significantly reduced by inserting a

narrow aperture upstream of the sample. The scattering signal

produced by a flooded sample, however, will result in an

extended signal on the detector, where the extent is given by

the projection of the beam footprint on the sample onto the

detector. Fig. 4 shows two examples of this. For a fixed value of

�, the orientation of this extended signal on the detector

depends on the detector angles (for example, the projected

footprint rotates on the detector in a scan along the l direc-

tion).

There are two fundamental advantages in keeping the

detector and slits aligned with the projected footprint direc-

tion: (i) the orientation of the signal on the detector will not

change, which greatly facilitates data analysis and background

removal, and (ii) the slit edges are aligned with the approxi-

mately rectangular signal shape, providing for the tightest

possible slit aperture while ensuring that the entire signal is

nonetheless integrated.

Another frequently encountered problem arises when using

a sample environment such as an ultra-high-vacuum chamber

with beryllium windows. The incident X-ray beam generates

unwanted scattering where it penetrates the container walls

(as shown by the yellow discs in Fig. 3b). These scattering

sources are spatially separated from the sample along the

direction of the incoming beam. Having the slits aligned along

the kin direction allows one to cut out this background scat-

tering without the risk of blocking the signal from the sample

at the same time. As the projected footprint size and the

distance from the sample to the container walls change as a

function of the detector position, the slit sizes may have to be

adjusted dynamically for this mode.

Note that, for small incoming angles, the orientations of the

footprint and the incoming X-ray beam are nearly identical,

such that all of the above-mentioned advantages apply. The

calculation for these modes is analogous to that for a

stationary q? direction previously. Now we require that either

kin or the direction of the footprint, which is given by A� kin

in the vertical geometry, are perpendicular to the x̂x� direction.

For all angles equal to zero, this gives

x̂x� 	 kin ¼ 0: ð62Þ

At non-zero positions, equation (62) becomes

ð���� N � x̂x�ÞðA� kinÞ ¼ 0; ð63Þ

and its solution is

tan � ¼
sin �

tanð� � �Þ
: ð64Þ

Setting � to zero in equation (64) aligns the slits and detector

with kin, while using the actual value of � keeps a constant

orientation of the beam footprint.

Owing to the change in coordinate system, for the hori-

zontal geometry we want to keep x̂x� perpendicular to kin (this

will keep the same pairs of slits perpendicular or parallel to the

footprint as for the vertical geometry), and we have to use the

�h rotation to take into account the incoming angle onto the

surface:

ð���� N � ẑz�Þð�h � kinÞ ¼ 0; ð65Þ

which leads to

tan � ¼
sinð�� !hÞ

tanð�Þ
: ð66Þ

Setting !h to zero again gives the correct orientation with

respect to the incoming X-ray beam.

5. Calculating the reciprocal-space coordinates for
each pixel

The observed direction of the outgoing scattering vector is

different for each pixel on an area detector, resulting in a two-

dimensional spatially resolved diffraction signal. We will now
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Figure 4
Detector images showing the crystal truncation rod signal acquired from
a NdGaO3 surface (sharp and intense elongated feature) close to a Bragg
peak (broad diffuse feature) using the two different modes for the �-axis
rotation: (a) keeping the q? direction aligned with the slits, and (b)
keeping the direction of the beam footprint on the sample horizontal on
the detector.



discuss the conversion from pixel coordinates ði; jÞ to their

corresponding hkl values and the appropriate intensity

corrections to be applied to each pixel.

Consider Fig. 5(a). We assume that the detector has been

mounted for normal incidence of the radiation onto its active

area at some distance R from the diffractometer centre (DC),

meaning that the directions of the pixel rows and columns ði; jÞ

are perpendicular to the direction of kout and the detector

rotation axis �. With all detector angles set to zero

(� ¼ � ¼ � ¼ 0), the direct X-ray beam hits the area detector

at the nominal zero position on the detector ðci; cjÞ, measured

in units of pixels. (Note that ci and cj do not have to be inte-

gers. The beam position is normally calculated as the centre of

mass of the incident intensity distribution, yielding a more

accurate position.)

Using the coordinate system for the vertical geometry, a

pixel at coordinate ði; jÞ is located at some offset ð�x;�zÞ

from the direct-beam position:

�x ¼ ðci � iÞwx; �z ¼ ðcj � jÞwz; ð67Þ

where wx and wz are the pixel sizes along the x and z direc-

tions, respectively (for the PILATUS 100K, wx ¼ wz=

172 mm).

The ðxp; yp; zpÞ position of this pixel in the laboratory frame

of reference for non-zero detector angles can then be

computed as

xp

yp

zp

0
@

1
A ¼ ���� N

�x

R

�z

0
@

1
A ð68Þ

where �, � and N are the rotation matrices given in equations

(8), (10) and (56), evaluated for the nominal detector angles.

Now there are two cases to be considered regarding the use

of guard slits. Firstly, when using an open-slit geometry in a

stationary mode (Specht & Walker, 1993; Vlieg, 1997; Schle-

pütz et al., 2005), where the entire sample is visible by each

pixel, the effective detector angles �p and �p for each pixel are

determined by (see Fig. 6a)

�p ¼ arctanðzp=ypÞ; ð69Þ

�p ¼ arcsinðxp=dÞ; ð70Þ

where

d ¼ ½ð�xÞ2 þ R2 þ ð�zÞ2�1=2
ð71Þ

is the actual distance of the pixel from the DC. (Note that the

values of �p and �p are independent of the choice of coordi-

nate system. The exact same answer would have been

obtained by using the horizontal geometry coordinate system.)

The second case, when using the guard slits to define the

angular resolution of the measurement, is more complex. This

is shown schematically in Fig. 5(b). The effective angles are no

longer defined through the distance of the detector from the

sample, but rather from the beam-defining aperture formed by

the guard slits. Note that this also implies that the X-rays

arriving at the pixel ði; jÞ are no longer originating at the DC,

but from a point with a trajectory through the slits onto this

pixel.

The calculations require a precise knowledge of the slit

distance Rs from the DC. Rotating the detector also rotates

the slit aperture in the laboratory frame of reference to a new

position given by
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Figure 5
On the conversion from pixel coordinates to angular positions. (a) In the
open-slit geometry, the angular offsets of non-centred pixels are
determined by the distance R between the rotation centre and the
detector and the linear offsets �x;�z in the plane of the detector. (b)
When using resolution-defining slits, R needs to be replaced by the
distance between the slits and the detector, given by R� Rs.

Figure 6
Calculating the effective detector angles �p and �p for each detector pixel
for (a) the open-slit geometry, and (b) using resolution-defining slits.



xs

ys

zs

0
@

1
A ¼ ���

0

Rs

0

0
@

1
A; ð72Þ

as shown in Fig. 6(b). Here we have assumed the slit aperture

to be centred on the � axis, which therefore does not need to

be included in the transformation. The effective detector

angles are then

�p ¼ arctan
zp � zs

yp � ys

 !
; ð73Þ

�p ¼ arcsin
xp � xs

dd;s

� �
; ð74Þ

where dd;s is the distance between the pixel and the slit

aperture:

dd;s ¼ ½ðxd � xsÞ
2
þ ðyd � ysÞ

2
þ ðzd � zsÞ

2
�
1=2: ð75Þ

It should be noted that calculating the angular offsets �� and

�� of each pixel from the nominal � and � positions by writing

(for � ¼ 0, see Fig. 5)

�� ¼ arctan
�z

R

� �
; �� ¼ arctan

�x

R

� �
ð76Þ

is an approximation that is only valid for R
 f�x;�zg and

� ’ � ’ 0. It relies on the assumption that a change ð�zÞ in

the pixel position results in a certain change in � independent

of �. In general, however, the mapping of the spherical ð�; �Þ
coordinates onto the Cartesian detector coordinates is more

complex, as is illustrated in Fig. 7, and the results from

equations (69) and (70) or (73) and (74) have to be used.

Knowing the effective angular positions for each pixel now

(the sample angles are independent of pixel position and

hence identical for all pixels), the corresponding hkl values

can be computed straightforwardly by combining equations

(13) and (15) for the vertical geometry, or equations (43) and

(44) for the horizontal geometry, to calculate H’=!. Multi-

plying by the inverse of the orientation matrix then yields the

hkl values in the crystal frame of reference:

H ¼ ðUBÞ�1 H’=!: ð77Þ

The intensities measured in each pixel need to be corrected

with the usual correction factors (Vlieg, 1997; Schlepütz et al.,

2005), most of which depend on � or � and therefore have to

be calculated individually.

If slits are used to define the active scattering area on the

sample surface, the active area correction also has to be

calculated with respect to each pixel location. A ray-tracing

approach to this problem has been presented by Mariager,

Lauridsen et al. (2009).

In addition to these standard corrections, the relative

change in solid scattering angle for the different pixels has to

be taken into account. Owing to the flat detector surface,

pixels away from the direct-beam position will be (i) further

away from the DC, and (ii) at non-normal incidence with

respect to the scattered beam, both of which result in a

decrease of the subtended solid angle.

For the open-slit geometry, the change in distance is taken

into account by multiplying each pixel’s integrated intensity by

a correction factor of

Cd ¼ d2=R2; ð78Þ

while the change in projected pixel size due to the beam

inclination is compensated for by

Ci ¼ 1=cos½arctanð�r=RÞ�; ð79Þ

with �r ¼ ½ð�xÞ2 þ ð�zÞ2�1=2 (see Fig. 5).

With closed slits, the inclination correction is modified in

the following way:

Ci ¼ 1=cosfarctan½�r=ðR� RsÞ�g: ð80Þ

The change in distance, however, also depends on the orien-

tation of the sample since different parts of the sample surface

are visible to different pixels. Also, here, the ray-tracing

approach (Mariager, Lauridsen et al., 2009) can be used to

calculate the effective sample-to-detector distance d0 for all

pixels, yielding a correction factor of

Cd ¼ d02=R2: ð81Þ

Note that the corrections by Ci and Cd become negligible

when the extent of the detector’s active area is much smaller

than the sample-to-detector distance (R
 �r), which is

normally the case. For example, using R = 1140.8 mm and

assuming the nominal zero position of the detector is exactly

in its centre, the largest necessary corrections occur for the

corner pixels of the PILATUS 100K and have values of

Cd ¼ 1:0016; Ci ¼ 1:00078; ð82Þ

in the open-slit case.

6. Recording three-dimensional RSMs

The mapping of pixel coordinates to hkl values corresponds to

a curved slice through reciprocal space, which is given by all
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Figure 7
On the conversion from polar detector angle coordinates f�; �g to
Cartesian pixel coordinates fi; jg. Changing only one coordinate in one
system generally results in a change of both coordinate values in the other
system.



those reciprocal-space points lying on the surface of the Ewald

sphere that are visible by the detector (see Fig. 8). The optimal

sampling of reciprocal space to obtain a three-dimensional

RSM is achieved by recording a set of these slices along the

normal direction n to the slice surfaces (Mariager, Lauridsen

et al., 2009). As can be seen in Fig. 8, this is equal to the

direction of kout.

In order to perform a reciprocal-space scan along this

direction, we must express kout in terms of the reciprocal-

lattice coordinates of the crystal. Using the results from x3, we

can rewrite the scattering condition, kout ¼ kin þ q. We

transform the known direction of the incoming X-ray beam,

kin, from the laboratory frame of reference to reciprocal-space

coordinates. Then, for a specific scattering vector q, given in

reciprocal space by H ¼ ðh; k; lÞ, kout becomes

kout;latt ¼ ðUBÞ
�1��1

v A�1
0

1

0

0
@

1
Aþ h

k

l

0
@

1
A: ð83Þ

An example of a three-dimensional RSM obtained from a

single area-detector scan is shown in Fig. 9. The data were

measured on a sample with GaAs nanowires grown on a GaAs

substrate. The scattering intensity distribution around the

GaAs zincblende ½111� Bragg peak has been obtained using

the reciprocal-space coordinate calculations derived in x5. A

detailed description of this system can be found in Mariager et

al. (2007) and Mariager, Schlepütz et al. (2009).

7. Conclusion

The angle calculations for a (2+3)-type surface diffractometer

have been detailed in a comprehensive, step-by-step manner,

both for the horizontal and for the vertical scattering

geometry. They are a direct adaptation from the original

calculations for the (2+2)-type diffractometer by Evans-

Lutterodt & Tang (1995) and the (2+3)-type design by Vlieg

(1998), and establish a firm basis for the discussion of some

particular aspects of using area detectors. Firstly, a new mode

for the detector rotation particularly suited to the use of area

detectors, in which the orientation of the detector and the

detector slits is aligned with the incoming X-ray beam, has

been described. Secondly, we have focused on obtaining two-

dimensional reciprocal-space maps from single detector

images. The presented formalism to convert between pixel

positions and reciprocal-space coordinates is independent of a

particular diffractometer geometry, and hence generally

applicable.
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