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Abstract

A step-by-step account is presented describing how to determine the rotational movements of the sample

and detector in order to record an
�
hkl � reflection of a single crystal mounted either in horizontal or vertical

geometry on the surface diffractometer of the Materials Science beamline of the Swiss Light Source.
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INTRODUCTION

This document explains step-by-step the calculations required to perform reciprocal space

movements using the surface diffractometer at the Materials Science beamline of the Swiss Light

Source. This is meant as a convenient primer for any interested user, and attempts to bring all

the relevant mathematics and physics together in a single document. It draws heavily from the

literature, in particular the papers from Busing and Levy [1], Evans-Lutterodt and Tang [2], Vlieg

[3, 4], Bunk and Nielsen [5], and Diebel [6].

The diffractometer can be configured in one of two geometries (“vertical” or “horizontal”) –

which geometry should be used depends on the demands of the experiment.

ROTATION MATRICES

Before we proceed, we briefly summarize active (i.e., rotation of an object, not the coordinate

system into the object) right-handed rotations about some angle θ about the x-, y- and z-axes.

These are, respectively

R θ
x � ����� 1 0 0

0 cosθ � sinθ

0 sinθ cosθ

�
			� ; (1)

R θ
y � ����� cosθ 0 sinθ

0 1 0� sinθ 0 cosθ

� 			� ; (2)

R θ
z � ����� cosθ � sinθ 0

sinθ cosθ 0

0 0 1

� 			�� (3)

The inverse rotations of these R � 1 � θ � are the transposes of the arrays R T � θ � . Because cosθ �
cos � � θ � and sinθ � � sin � � θ � , these inverse rotations are (obviously) also equal to R � � θ � .
THE DIFFRACTOMETER

The Newport 5-circle diffractometer is shown in Fig. 1. Of particular note are the three different

laboratory coordinate frames. For the calculations described here, the two lower coordinate frames
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FIG. 1: Schematic figure of the 5-circle (2 sample + 3 detector) Newport diffractometer used at the Surface

Diffraction station of the SLS. The sample circles are α and ωv in the vertical geometry (hexapod axis

horizontal) and ωh and φ in the horizontal geometry (hexapod axis vertical), while the detector circles are

γ, δ, and ν. All detector and sample motor axes cross at the diffractometer center (DC). Other important

motor movements are also shown. Arrow heads point in the positive direction. Three coordinate systems

are shown – the Newport Cartesian frame, which tallies with the naming convention of the motors; the

calculation frame of reference in the vertical geometry (see also Fig. 2), which is used by both Evans-

Lutterodt [2] and Vlieg [3, 4]; and the calculation frame of reference in the horizontal geometry (see also

Fig. 7).
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FIG. 2: Schematic figure of the laboratory coordinate system, incoming and outgoing wavevectors �kin and�kout , the scattering vector �G, and the pertinent motor rotations in the vertical geometry setup of the surface

diffractometer.

are relevant – they have both been chosen such that the direct beam points in the positive y-

direction and the sample surface normal at 0o grazing incidence lies along the z-axis. The upper

coordinate frame is also shown, as it determines the naming and positive directions of the Newport

diffractometer motors (i.e., the direction of the arrows).

In the vertical geometry, motors α, ωv, γ, δ, and ν are used, while for the horizontal geometry,

motors φ, ωh, γ, δ, and ν are used.

VERTICAL GEOMETRY

Geometrical setup

Consider a flat single crystal sample mounted vertically (i.e., with its flat face vertical and its

surface normal horizontal), as shown in Fig. 2. Here, the laboratory set of coordinates � x � y � z � , are

fixed by y being the positive direction of the incident x-ray beam, x being the vertical direction

around which both α and γ rotate, z being the horizontal direction around which δ rotates when

γ � 0, and ωv rotates when α � 0. Note that ωv and δ are left-handed rotations around the z-axis.

Using the equations 1 and 3, we therefore obtain for the four circles γ, α, δ, and ωv, respectively,
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the rotation matrices Γ, A, ∆, and Ωv, given by

Γ � R γ
x � ����� 1 0 0

0 cosγ � sinγ

0 sinγ cosγ

� 			� ; (4)

A � R α
x � ����� 1 0 0

0 cosα � sinα

0 sinα cosα

� 			� ; (5)

∆ � R δ
z � ����� cosδ sinδ 0� sinδ cosδ 0

0 0 1

� 			� ; (6)

Ωv � R ωv
z � ����� cosωv sinωv 0� sinωv cosωv 0

0 0 1

� 			� � (7)

where we note that ∆ and Ωv represent positive left-handed rotations.

The relevant rotation matrices for the horizontal geometry are handled in Section , because

there a different calculation coordinate orientation is chosen.

Calculating diffractometer angles

The goal of this section is to obtain expressions for the four motor positions (angles) α, ωv,

δ, and γ in terms of the scattering vector in the frame of reference of the crystal surface and the

incident and exit angles perpendicular to the crystal surface (referred to as βin and βout , see text

below and Fig. 3). We will derive general expressions for these angles, for which specific values

will crystallize out, once we define which one of three recording modes we choose to work with,

described below.

Our first task is to determine the components X , Y , and Z, of the scattering vector �G in the

laboratory frame of reference. The detector is rotated first by ∆ then by Γ (the order of rotation is

important, because if the γ-motion is first calculated, this moves the δ-axis out from being coaxial

with the z-axis. Therefore, the δ-motion must always be performed first. This also holds for the

ωv (first) and α (second) motions of the sample). The detector is now positined such that it is

pointing back along the outgoing, elastically scattered x-ray �kout . We use the fact that, in units of
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2π � λ (for which the magnitude of the incident and scattered wavevectors is then equal to unity),

the incoming x-ray beam can be represented by the vector

�kin � ����� 0

1

0

� 			� (8)

and express the diffraction condition

�kout ���kin � �G � ����� X

Y

Z

� 			� (9)

by �kout � �kin � � Γ � ∆ � I � ����� 0

1

0

� 			� � (10)

where I is the identity matrix. Using our rotation matrices defined above, we therefore obtain����� sinδ

cosγ cosδ � 1

sinγ cosδ

� 			� � ����� X

Y

Z

� 			��� (11)

We now introduce the vector �Gφ given by

�Gφ � ����� hφ

kφ

lφ

� 			� � (12)

which denotes the scattering vector as viewed in the orthonormal Cartesian crystal frame of ref-

erence � xc � yc � zc � . This frame of reference contains xc and yc in the surface of the crystal and

therefore zc is normal to the surface. Note that �Gφ does not represent the conventional � hkl � Miller

indices, because (a) we are using an orthonormal frame of reference (which is not appropriate for

hexagonal, triclinic, monoclinic, or rhombohedral crystal systems), and (b) it does not take into

account any miscuts of the crystal. This last aspect is dealt with later.

For the angular movements of the sample, α and ωv, both equal to zero, � xc � yc � zc � and � x � y � z �
lie above one another. Let us start in this configuration. In order to satisfy the diffraction condition,

6



β

β

z

y

x

out

in

kin

kout

FIG. 3: Schematic of the incident and exit angles βin and βout . In the vertical geometry, βin is equal to α. In

the horizontal geometry, βin is equal to ωh.

we need to first rotate ωv, then α, which will therefore reposition �Gφ into the laboratory-based

diffraction condition �G, i.e., ����� X

Y

Z

� 			� � A � Ωv

����� hφ

kφ

lφ

� 			�
� ����� hφ

kφ

lφ

� 			� � Ω � 1
v � A � 1

����� X

Y

Z

� 			� (13)

Multiplying out, we obtain����� hφ

kφ

lφ

�
			� � Ω � 1
v � ����� X

cosαY � sinαZ� sinαY � cosαZ

�
			� (14)

� ����� cosωv X � sinωv
� cosαY � sinαZ �

sinωv X � cosωv
� cosαY � sinαZ �� sinαY � cosαZ

� 			� � (15)

Consider Fig. 3. In our routines for reciprocal space navigation, three modes are offered,

namely a fixed incident x-ray angle (βin � α � const.); a fixed exit x-ray angle (βout � const.); or
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βin � βout .

The momentum transfer perpendicular to the sample surface, lφ, in units of 2π � λ, is simply

lφ � sinβin � sinβout � (16)

But from eqns. 11 and 15,

lφ � � sinαY � cosαZ� � sinα � cosγ cosδ � 1 ��� cosα � sinγ � cosδ� cosδ � sinγ cosα � cosγ sinα ��� sinα� cosδ sin � γ � α �� �
� � sinβout

� sinα� �
� �
sinβin

� (17)

This is our first condition. We now determine the (squared) magnitude of the in-plane compo-

nent of �Gφ. We can predict in advance that this should be independent of ωv, as this rotation is

always normal to the crystal surface. Again, referring back to eqns. 11 and 15, we obtain

h2
φ � k2

φ � ! cosωv � X � sinωv
� cosα � Y � sinα � Z �#" 2� ! sinωv � X � cosωv
� cosα � Y � sinα � Z �#" 2� X2 � � cosα � Y � sinα � Z � 2 � (18)

which is indeed independent of ωv.

The next condition we exploit is the fact that the magnitude of �Gφ is equal to that of �G and that

both these must also be independent of ωv. From eqn. 11, we obtain

X2 � Y 2 � Z2 � � sinδ � 2 � � cosγ cosδ � 1 � 2 � � sinγ cosδ � 2� sin2 δ � cos2 γ cos2 δ � 2cosγ cosδ � 1 � sin2 γ cos2 δ� cos2 δ � sin2 γ � cos2 δ �� �
� � 1

� sin2 δ� �
� � 1

� 2cosγ cosδ � 1

� 2 � 2cosγ cosδ� � 2Y � h2
φ � k2

φ � l2
φ � (19)

From eqn. 17, we know that

sinβout � cosδ � sin � γ � α �
8



� cosδ � � sinγ cosα � cosγ sinα �� cosα � sinγ cosδ � sinα � cosγ cosδ� cosα � Z � sinα � � Y � 1 � � (20)

And by inserting eqn. 19, we obtain

sinβout � cosα � Z � sinα $%� 1
2
� h2

φ � k2
φ � l2

φ ��� 1 & � (21)

Remembering that sinα � sinβin, we rearrange eqn. 21 to obtain

Z � ! sinβout � sinβin
� Y � 1 �%"'� cosα � (22)

We now substitute the expressions for Y and Z (eqns. 19 and 22) into eqn. 18:

h2
φ � k2

φ � X2 � � cosα � Y � sinα � Z � 2� X � (*) h2
φ � k2

φ � � cosα � Y � sinα � Z � 2 + 1 , 2� ( ) h2
φ � k2

φ � � cosβin � Y � sinβin � Z � 2 + 1 , 2 � (23)

What have we achieved in deriving eqns. 19 to 23? X , Y , and Z have now been expressed only

in terms of hφ, kφ, and lφ (the momentum transfer positions we want to move to in the frame of

reference of the crystal surface) and βin and βout , which are still free variables.

We now determine the diffractometer angles α, γ, δ, and ωv in terms of hφ, kφ, and lφ and X , Y ,

and Z (which, we have just stated, can themselves be expressed in terms of hφ, kφ, and lφ and βin

and βout). From eqn. 11, we directly obtain

sinδ � X � (24)

We perform a little mathematical jiggerypokery to obtain our expression for γ:

tanγ � sinγ
cosγ� sinγ cosδ� cosγcosδ � 1 ��� 1� Z
Y � 1 � (25)

In order to obtain an expression for ωv, we first define a term

K - � cosβin � Y � sinβin � Z �'� (26)
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which we substitute into eqn. 15 to obtain

hφ � cosωv � X � sinωv � K� cosωv � hφ � sinωv � K
X

and

kφ � sinωv � X � cosωv � K� sinωv � kφ � cosωv � K
X

�
and combining these two expressions, we obtain

sinωv � kφ � hφ . sinωv / K
X � K

X� kφ

X
� hφ � K

X2 � sinωv � K2

X2� sinωv 0 1 � K2

X2 1 � kφ � X
X2 � hφ � K

X2� sinωv � kφ � X � hφ � K
X2 � K2 � (27)

Because ωv can assume values between ( 180o, the sine of the desired angle alone does not suffice.

So, we now substitute eqn. 27 into eqn. 27, and in a similar manner obtain

cosωv � hφ � X � kφ � K
X2 � K2 � (28)

From eqns. 27 and 28, we obtain

tanωv � kφ � X � hφ � K
hφ � X � kφ � K � (29)

which, if we use the atan2 function, unambiguously determines ωv.

Finally, of course,

sinα � sinβin � (30)

To calculate the diffractometer angles, we need to impose one final constraint on either βin or βout .

As we have mentioned already above, there are three available modes one can use to acquire data,

namely (a) fixed βin, (b) fixed βout , or (c) βin � βout .

We know from eqn. 16 that

lφ � sinβin � sinβout � (31)
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Therefore in case (a), βin � α is fixed and hence

sinα � sinβin �
sinβout � lφ � sinα � (32)

For fixed βout [case (b)],

sinα � lφ � sinβout � (33)

and for βin � βout [case (c)],

sinα � lφ
2 � (34)

Inserting the appropriate eqn. 32, 33, or 34 into our equations for X , Y , and Z (eqns. 23, 19, and

22, respectively) and then using these in eqns. 24, 25, 27, and 30 we are then able to compute δ, γ,

ωv, and α, respectively.

Detector rotation, ν

As we can see from Fig. 1, there is a third detector motor movement in addition to δ and γ,

namely ν, the rotation of the detector and slits around their symmetry axis. In our setup, we have

two active modes of ν-rotation, namely (a) a “static l-projection” (SLP) mode; and (b) a “static

footprint projection” (SFP) mode.

SLP mode

The purpose of the ν rotation in the SLP mode is to keep the projection in the planes of the slits

and detector of the momentum transfer perpendicular to the crystal surface �qz � �q 2 parallel to �∆z,

the opening of the slits in one direction (see Fig. 4). In this manner, the l-direction remains along�∆z. This implies that �∆x is always perpendicular to �q 2 , i.e.,�q 2�� �∆x � 0 � (35)

Let us look at the relevant geometry more closely (Fig. 5). With all motors set to zero, the

ν-axis lies along the laboratory y-axis and exhibits a right-handed rotation. The rotation matrix
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FIG. 4: Schematic figure of the detector and slit system for ν 3 α 3 γ 3 δ 3 0. The slit openings are ∆x and

∆z.

transform for ν, which we call N, is, according to eqn. 2, given by

R ν
y � ����� cosν 0 sinν

0 1 0� sinν 0 cosν

�
			� - N � (36)

Also, with all angles set to zero, we can express �∆x and �q 2 as

�∆x � C1 � ����� 1

0

0

� 			� �
�q 2 � C2 � ����� 0

0

1

� 			� �
We now move the detector motors to some set of values � ν � δ � γ � . It is immediately clear from the

schematic shown in Fig. 5 of the scattering vectors as viewed from the perspective of the detector

(i.e., along the direction � �kout ) that one has to rotate ν in a negative direction to bring q 2 (the

component of �G perpendicular to the sample surface) parallel to �∆z. The three rotations � ν � δ � γ �
12
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FIG. 5: Schematic figure of the vectors �kin, �kout , and �G, as viewed from the perspective of the detector,

which points back along �kout towards the centre of the diffractometer (hence �kout is seen here as being “head

on”). The vector �G connects �kin [at (000)] to �kout [at (hkl)]. For no rotation of the detector, it is clear that

the perpendicular component of �G is not parallel to the detector frame, which must therefore be rotated in a

negative sense to achieve this.

cause �∆x to become

�∆x � Γ∆N

����� 1

0

0

� 			� � (37)

where we have dropped the constant C1 (and will also drop C2), as the magnitudes of the slit size

in the x-direction or the momentum transfer perpendicular to the surface have no bearing on the

condition 35.

For non-zero values for α, �q 2 � A

����� 0

0

1

� 			�� (38)
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Inserting these expressions into eqn. 35, we obtain

A � 1 � Γ∆N

����� 1

0

0

� 			� ����� 0

0

1

� 			� � 0

� A � 1 � Γ∆

����� cosν

0� sinν

�
			� ����� 0

0

1

�
			�
� A � 1 � Γ ����� cosδ cosν� sinδ cosν� sinν

� 			� ����� 0

0

1

� 			�
� A � 1 � ����� cosδ cosν

cosγ � � sinδ cosν ��� sinγ sinν

sinγ � � sinδ cosν �4� cosγ sinν

� 			� ����� 0

0

1

� 			�
� ����� �5�5��5�5�� sinα � cosγ � � sinδ cosν ��� sinγ sinν ��� cosα � sinγ � � sinδ cosν �4� cosγ sinν �

� 			� ����� 0

0

1

� 			�� sinα cosγ sinδ cosν � sinα sinγ sinν � cosα sinγ sinδ cosν � cosα cosγ sinν� sinδ cosν � sinα cosγ � cosα sinγ �6� sinν � sinα sinγ � cosα cosγ �� sinδ cosν sin � α � γ �6� sinν cos � α � γ � � 0� � sinδ sin � γ � α �
cos � γ � α � � sinν

cosν� tanν � � tan � γ � α � sinδ � (39)

SFP mode

An incoming x-ray beam incident on a surface at a glancing angle such that it floods the sample

will illuminate a stripe across the sample surface. In traditional point-detector scans, a well-

defined parallelogram section of this footprint is selected by two sets of slits in the detector arm.

When using an area detector, the projection of the footprint is seen as a stripe [see Fig. 6(a)]. The

orientation of this stripe on the pixel image depends on the angle of the footprint on the sample,

as viewed from the perspective of the detector. Hence, in Fig. 6(b), the angle of the detector in the
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FIG. 6: (a) The footprint of the grazing-incidence beam on the sample is seen as a stripe on the area pixel

detector. (b) The unrotated detector [black dashed box] sees this footprint at an angle which depends on

the position of the detector and the tilt if the sample to the direct beam [i.e., the δ, γ and α angles]. The

footprint can be made to be parallel to the long edge of the area detector by rotating it around ν [red dashed

box]. (c) The coordinate system
�
xp 7 yp 7 zp � used to calculate the ν-rotation for the SFP mode is defined by,

and stationary with respect to, the detector.

ν � 0 position (dashed black box) is not parallel to the footprint (light purple stripe).

Hence, if either no ν-rotation or the SLP mode is chosen, the projection of the footprint is seen

to rotate within the pixel frame as one moves up a CTR. For example, if there is no detector-

axis rotation, the footprint stripe is seen to be parallel to the short sides of the detector frame

close to the base of the CTR (low γ values), while at the maximum accessible l, for which δ � 0,

the footprint stripe is parallel to the long sides of the detector frame. Under such conditions,

therefore, the detector slits must either be kept open at least to a square with edges equal in size to
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the sample footprint stripe, or else must be constantly varied from l-position to l-position in order

to accommodate the apparent footprint rotation from the perspective of the detector, which is a

complicated and normally impractical solution.

In the SFP mode, this problem is circumvented by rotating the ν-axis such that the long sides of

the detector frame remain parallel to the footprint [the red dashed box in Fig. 6(b)]. This therefore

allows the user to close down the vertical slits (i.e., those with their edges parallel to the long

sides of the detector frame) to values only marginally larger than the width of the footprint, which

means stray background signal (such as that produced by the incoming beam passing through a

beryllium dome) can be kept to a minimum.

We now derive the expression for the ν-rotation for any given α, δ, and γ values. We begin

by assuming that α � 0, and define a Cartesian coordinates system � xp � yp � zp � that is fixed in the

detector frame of reference [see Fig. 6(c)]. In this frame of reference, it should be clear that ν is

equal to the inverse tangent of the component of � kin in the xp-direction divided by that in the

yp-direction, i.e.,

ν � tan � 1 8 kxp
in

kyp
in 9 � (40)

To move � kin into the frame of reference of the pixel detector, we imagine that we begin with the

detector looking directly down the incoming beam (zp colinear with � kin). We now rotate γ in a

negative sense around xp, and then δ in a positive sense around yp. This is exactly the opposite

order of rotation compared to that described before in our angle calculations. This is because we

are now rotating the whole diffractometer and incoming x-ray beam in the frame of reference of

the detector, and not rotating the detector in the frame of reference of the diffractometer.

Referring back to our general expressions for rotation matrices (eqns. 1 to 3), the relevant

rotation matrices are therefore

Γp � R � γ
xp � ����� 1 0 0

0 cosγ sinγ

0 � sinγ cosγ

� 			� ; (41)

∆p � R δ
yp � ����� cosδ 0 sinδ

0 1 0� sinδ 0 cosδ

�
			��� (42)
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The incident beam in the detector frame of reference k :in is therefore

k :in � ∆p Γp kin� ∆p

����� 1 0 0

0 cosγ sinγ

0 � sinγ cosγ

� 			� ����� 0

0

1

� 			�<; k ;
� ∆p

����� 0

sinγ

cosγ

� 			�=; k ; (43)

� ����� cosδ 0 sinδ

0 1 0� sinδ 0 cosδ

� 			� ����� 0

sinγ

cosγ

� 			�=; k ;
� ����� sinδ cosγ

sinγ

cosδ cosγ

�
			�=; k ;>�
Using the xp- and yp-components of k :in in eqn. 40, we obtain

ν � tan � 1 0 sinδ cosγ
sinγ 1 �

Until now, we have assumed that α � 0. For nonzero α, we merely need to rotate by γ � α

instead of γ, and our equation becomes

ν � tan � 1 0 sinδ cos � γ � α �
sin � γ � α � 1 � (44)

HORIZONTAL GEOMETRY

Geometrical setup

Consider a flat single crystal sample mounted horizontally (i.e., with its flat face horizontal and

its surface normal vertical), as shown in Fig. 7. Here, the laboratory set of coordinates � x � y � z � ,
are fixed by y being the positive direction of the incident x-ray beam, z being the vertical direction

around which γ rotates and φ also rotates, as long as ωh (which determines the angle of incidence

of the incoming beam) is set to zero. x is the horizontal direction around which ωh rotates and
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FIG. 7: Schematic figure of the laboratory coordinate system, incoming and outgoing wavevectors �kin and�kout , the scattering vector �G, and the pertinent motor rotations in the horizontal geometry setup of the surface

diffractometer.

also δ rotates when γ � 0. Note that in this geometry, all motor rotations exhibit positive right-

handedness.

Using the equations 2 and 3, we therefore obtain for the four circles γ, φ, δ, and ωh, respectively,

the rotation matrices Γ, Φ, ∆, and Ωh, given by

Γ � R γ
z � ����� cosγ � sinγ 0

sinγ cosγ 0

0 0 1

� 			� ; (45)

Φ � R φ
z � ����� cosφ � sinφ 0

sinφ cosφ 0

0 0 1

� 			� ; (46)

∆ � R δ
x � ����� 1 0 0

0 cosδ � sinδ

0 sinδ cosδ

� 			� ; (47)
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Ωh � R ωh
x � ����� 1 0 0

0 cosωh � sinωh

0 sinωh cosωh

� 			� � (48)

Calculating diffractometer angles

The incoming x-ray beam (in units of 2π � λ) is now represented by the vector

�kin � ����� 0

1

0

� 			�?� (49)

We now essentially go through the same procedure as described above for the vertical geometry.

We begin with the diffraction condition, eqn. 9

�kout � �kin � �G � ����� X

Y

Z

� 			�
and move the detector to the required position for capturing the diffracted beam:� �kout � �kin � � Γ � ∆ � I � ����� 0

1

0

� 			�
� Γ

����� 0

cosδ

sinδ

� 			� � ����� 0

1

0

� 			�
� ����� � cosδ sinγ

cosδ cosγ � 1

sinδ

� 			� � ����� X

Y

Z

� 			� � (50)

Again, we now rotate the crystal into the diffraction condition, i.e.,����� X

Y

Z

� 			� � Ωh � Φ ����� hφ

kφ

lφ

� 			�
19



� ����� hφ

kφ

lφ

� 			� � Φ � 1 � Ω � 1
h

����� X

Y

Z

� 			� � (51)

Multiplying out, we obtain����� hφ

kφ

lφ

� 			� � Φ � 1 � ����� X

cosωh Y � sinωh Z� sinωh Y � cosωh Z

� 			�
� ����� sinφ � cosωh Y � sinωh Z ��� cosφX

cosφ � cosωh Y � sinωh Z �6� sinφX

cosωh Z � sinωh Y

� 			� � (52)

Referring back to Fig. 3 for the vertical geometry and remembering that the incident angle βin �
ωh, we again obtain eqn. 16

lφ � sinβin � sinβout (53)

for the momentum transfer perpendicular to the substrate surface. But from eqns. 50 and 52, we

know that

lφ � � sinωh Y � cosωh Z� � sinωh
� cosδ cosγ � 1 ��� cosωh sinδ� sinωh� �
� �

sinβin

� sinδ cosωh � cosδ sinωh cosγ� �
� �
sinβout

� (54)

We again determine the squared magnitude of the in-plane component of �Gφ, which we have

argued is independent of φ, as this rotation is always normal to the crystal surface. Referring once

more back to eqns. 50 and 52, we obtain

h2
φ � k2

φ � ! sinφ � cosωh Y � sinωh Z ��� cosφX " 2� ! cosφ � cosωh Y � sinωh Z �6� sinφX " 2� X2 cos2 φ � sin2 φ � cosωh Y � sinωh Z � 2 � 2X cosφ sinφ � cosωh Y � sinωh Z �� X2 sin2 φ � cos2 φ � cosωh Y � sinωh Z � 2 � 2X cosφ sinφ � cosωh Y � sinωh Z �� X2 � � cosωh Y � sinωh Z � 2 � (55)
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which, as predicted, is independent of ωh. Remembering that ωh � βin, we rearrange eqn. 55 to

obtain

X �@(*) h2
φ � k2

φ � � cosβin � Y � sinβin � Z � 2 + 1 , 2 � (56)

We use the negative solution, as we will see later in eqn. 60 that this is needed in order to make

the δ- and γ–circles move in a positive direction.

The next condition we exploit is the fact that the magnitude of �Gφ is equal to that of �G and that

both these must also be independent of ωh. From eqn. 50, we obtain

X2 � Y 2 � Z2 � cos2 δ sin2 γ � cos2 δ cos2 γ � 1 � 2cosδ cosγ � sin2 δ� cos2 δ � 1 � 2cosδ cosγ � sin2 δ� 2 � 2cosγ cosδ� � 2Y � h2
φ � k2

φ � l2
φ� Y � � � h2

φ � k2
φ � l2

φ �5� 2 � (57)

From eqn. 50 and the far right-hand term of eqn. 54, we obtain

sinβout � cosωh � sinδ � sinωh � cosδ � cosγ� cosωh � Z � sinωh
� Y � 1 �� cosωh � Z � sinβin
� Y � 1 �� Z � ! sinβout � sinβin
� Y � 1 �#"A� cosωh � (58)

So, with equations 56, 57, and 58, we have been able to express the three orthogonal components

of the scattering vector in the laboratory frame (X , Y , and Z) in terms of the components of the

same scattering vector in the crystal frame (hφ, kφ, and lφ) and the angles βin and βout .

Our next step is to solve for the diffractometer angles γ, δ, φ, and ωh. From eqn. 50,

tanγ � sinγ
cosγ� sinγ cosδ
cosγ cosδ � 1 � 1� � X
Y � 1 � (59)

Note that tanγ depends on the individual signs of X and Y � 1, hence we use the quadrant-specific

atan2 function in ANSI C.
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Again using eqn. 50, we immediately obtain

sinδ � Z;

cosδ � � X
sinγ

and hence

tanδ � Z � sinγ� X � (60)

For determining φ, we define

K � cosβin � Y � sinβin � Z � (61)

Using this definition, we obtain from eqn. 52

hφ � sinφ � K � cosφ � X� cosφ � hφ � sinφ � K
X

kφ � cosφ � K � sinφ � X� sinφ � � kφ � cosφ � K
X �

By following the same procedure as we have already detailed for the equivalent case in the vertical

geometry, we obtain by inserting these two expressions into one another

tanφ � hφ � K � kφ � X
hφ � X � kφ � K � (62)

Again, we need one additional constraint in order to solve for the four physical angles γ, δ, ωh

and φ, which, as before for the vertical geometry, we obtain by defining three possible recording

modes, i.e., βin fixed; βout fixed; or βn � βout .

For βin fixed, this implies that ωh - βin is fixed. Therefore

sinβout � lφ � sinωh � (63)

Similarly, for βout fixed,

sinωh � sinβin � lφ � sinβout � (64)

And finally for βn � βout ,

sinβin � sinβout � lφ � 2 � (65)

We are now able to uniquely calculate all angles by inserting eqns. 63, 64 and 65 into our

expressions for X , Y , and Z.
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FIG. 8: Schematic figure of the vectors �kin, �kout , and �G, as viewed from the perspective of the detector,

which points back along �kout towards the centre of the diffractometer (hence �kout is seen here as being “head

on”). The vector �G connects �kin [at (000)] to �kout [at (hkl)].

Detector rotation, ν

There are also the same two active detector rotation modes available for the horizontal geome-

try. The first mode, i.e., the static l-projection (SLP) mode, produces only small adjustments of ν

for modest incident angles ωh. The second (SFP) mode invokes ν-rotations which are essentially

identical to those for the same mode in the vertical geometry. Both modes are now detailed.

SLP mode

If we consider Fig. 8, it should be clear that the detector “sees” CTRs that are almost vertical,

i.e., parallel to the short edge of the detector frame, independent of the angles δ and γ. This is only

approximately true, and rotation of ν is necessary for non-zero incident angles ωh.
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Using the same arguments as those for the SLP mode in the vertical geometry, we require that�q 2 � �∆x � 0 � (66)

in other words, the CTR and the long edge of the detector are perpendicular to one another. As in

the vertical geometry (eqn. 36), with all the motors set to zero, the ν-axis lies along the laboratory

y-axis and exhibits a right-handed rotation, i.e.,

R ν
y � ����� cosν 0 sinν

0 1 0� sinν 0 cosν

� 			� - N �
Also, with all angles set to zero, we can express �∆x and �q 2 as

�∆x � C1 � ����� 1

0

0

� 			� �
�q 2 � C2 � ����� 0

0

1

� 			� �
The three detector rotations � ν � δ � γ � cause �∆x to become

�∆x � Γ∆N

����� 1

0

0

� 			� � (67)

where we will again drop the constant C1 and C2.

For non-zero values for ωh, �q 2 � Ωh

����� 0

0

1

� 			�� (68)

Inserting these expressions into eqn. 66, we obtain

Ω � 1
h � Γ∆N

����� 1

0

0

� 			� ����� 0

0

1

� 			� � 0
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� Ω � 1
h � Γ∆

����� cosν

0� sinν

� 			� ����� 0

0

1

� 			�
� Ω � 1

h � Γ ����� cosν

sinδ sinν� cosδ sinν

� 			� ����� 0

0

1

� 			�
� Ω � 1

h � ����� cosγ cosν � sinγ sinδ sinν

sinγ cosν � cosγ sinδ sinν� cosδ sinν

� 			� ����� 0

0

1

� 			�
� ����� �5�5��5�5�� sinωh sinγ cosν � sinωh cosγ sinδ sinν � cosωh cosδ sinν

� 			� ����� 0

0

1

� 			� � 0� sinν � sinωh cosγ sinδ � � � sinγ sinωh cosν� tanν � � sinγ sinωh
sinωh cosγ sinδ � cosωh cosδ (69)

SFP mode

The expression for the SFP mode is identical to that given by eqn. 44, except that now the

correction for the incident angle to the surface is not a subtraction of α from γ, but a subtraction

of ωh from δ, i.e.,

ν � tan � 1 0 sin � δ � ωh � cosγ
sinγ 1 � (70)
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