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

 

soft-X-ray radiation with circular and 0-180o

 

variable linear polarizations

 


 

energy range 300 –

 

1800 eV


 

high resolution E ~ 30 meV @ 1 keV


 

collimated-light PGM optical scheme


 

endstations:
-

 

resonant inelastic X-ray scattering (RIXS): E~70 meV @ 1 keV 
-

 

angle-resolved photoelectron spectroscopy (ARPES)

ADRESS (ADvanced RESonant Spectroscopies) beamline :
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Beamline layout

monochromator optics

front end

undulator

RM1+ARPES endstation

RM2+RIXS endstationslit
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Undulator

- Starting point: Apple-II type permanent magnet design



 

6 motors (P-shifts+gap), complicated design

/4 → circular linear 45o

/2 → linear V

linear H

linear V
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Undulator: Concept

- Apple-2 permanent magnet design with fixed gap (concept by R. Car)

 full functionality (circular + linear 0-180o

 

polarizations) 
 simple and mechanically rigid design (4 motors)

 
 polarization and E coupling requires complicated mathematical models 

P-shift E-shift
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Undulator: Design (T.Schmidt's group)



 

mechanically rigid C-like construction

 =44 mm (optimized for hv = 400-1800 eV), 
L=3.5 m

- world's first fixed gap undulator
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

 

gap reduced to 11 mm =>

 

no V-pol

 

flux discontinuity 
around 1000-1200 eV (Zn,Ga,Ge

 

2p3/2

 

; La,Ce 3p3/2

 

)

 

 

source @1000 eV: X

 

Z = 0.1070.014 mm, 'X

 

'Z = 0.0470.014 mrad

Undulator: Performance
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Optical scheme : Collimated-light PGM

 

source 

collim ating 
m irror 

apertures pre-m irror

grating

focussing 
m irror 

slits

refocussing 
m irror (toroid ) 

refocussing  
m irror (ellipsoid  )

sam ple (AR PE S) 

sam ple (R IXS) 

19 '860

0 

~2 '250

3 '500

13 '010

15 '960 16 '860

18 '860

1074m2

452m2



 

high resolution

 


 

no entrance slit: high flux

 


 

wide energy range

 


 

resolution, flux and HIOS optimization by Cff

 



 

proven design and flawless operation @ SLS



ADRESSADRESS

Monochromator optics: Resolution optimization



 

goal: E/E > 30 000 @ 1 keV

 


 

tools: ray tracing code PHASE (J. Bahrdt, U. Flechsig)
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Slope errors optimization



 

most critical are PG

 

and lFM
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→0

sagittal

 

l→0

-

 

vendors: PG

 

= 0.375 rad, 
lFM

 

= 7.5 rad

 

possible → E/E ~ 30000

- starting point: 4800/mm grating in 1st order, f = 10 000 mm

-

 

ideal optics → E/E = 65000;

 
real optics (/l)PO

 

= 0.5/5rad, (/l)TO

 

= 2.5/25rad → E/E = 16700

- which

 

are

 

the

 

most

 

critical

 

elements?
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Beamline geometry optimization

(1) horizontal focussing

 

schemes

 
-

 

collimation by CM + focusing by FM

 
-

 

cylinder CM, focusing by FM

 
-

 

focusing by CM, cylinder FM

 



 


 

E/E improves by ~1000

(2) astigmatism 


 

best E/E @ stigmatic focus

CM

FM
exit slit

(3) dispersion arm 


 

saturation @ ~14 m (~10 m available) 
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Resolution with the optimized parameters



 

FWHM spot size = 14.1228 m2, almost no aberrations 


 

E/E up to 33000 @ 4200/mm, Cff

 

=10

 


 

optimal resolution coverage with 800, 2000 and 4200/mm



 

diffraction contribution E/E = N included
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Gratings: Flux optimization



 

Lamellar or blazed? if lamellar, h and c/d ?

 


 

Tools: Grating efficiency code REFLEC (Nevier+BESSY)

-

 

2000/mm ideal blazed (blaze

 

=

 

optimized @ 930 eV, Cff

 

=2.25) 
vs ideal lamellar (h=5.5nm, c/d=0.6 optimized @ 700-1100 eV, Cff

 

=2.25)

400 600 800 1000 1200 1400 1600 1800
0

0.02

0.04

0.06

0.08

0.1

hv

Cff =2.25

R



 

the blazed betters on flux 
+ flatness of the energy 
dependence

Blazed vs lamellar
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Gratings: Blazed vs lamellar

400 600 800 1000 1200 1400 1600 1800
0

0.02

0.04

0.06

0.08

0.1

hv

Cff =2.25

R

-

 

2000/mm realistic profile: apex

 

~170o

 

for blazed, 164o

 

for lamellar



 

advantages of the blazed 
on flux and flatness degrade 

apex

apex
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-

 

800/mm blazed (blaze

 

=) vs lamellar (h=11 nm, c/d=0.69), ideal and realistic



 

for lower l/mm 
advantages of the blazed on 
flux and flatness preserve

400 600 800 1000 1200 1400 1600 1800
0

0.05

0.1

0.15

0.2

hv

Cff=2.25

R

=> blazed 800/mm (high flux, low res + HIOS) = 'flux' grating; 
lamellar 2000/mm (low flux, high res + HIOS) = 'workhorse' grating

 
lamellar 4200/mm (lowest flux, highest res) = ‘hi-res' grating

Gratings: Blazed vs lamellar
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Gratings: Optimization of lamellar gratings


 

h, c/d, Cff

 

to optimize the flux, energy dependence flatness, HIOS interplay

 


 

PM(Cff

 

) to be included

-

 

realistic 2000/mm (apex

 

=164o), hv=700-1200 eV

 optimal h, c/d, Cff

 

taken slightly shifted from the flux maximum towards better flatness + HIOS

<reflectivity> <reflectivity variation>

c/d

h(nm)
Cff

c/d

h(nm)
Cff
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Beamline flux performance with the optimized gratings



 

excellent flux by virtue of (1) 2.4 GeV

 

ring optimal for soft X-rays; (2) glancing angles on 
the mirrors; (3) minimal l/mm; (4) blazed/lamellar and profile optimization of gratings

400 600 800 1000 1200 1400 1600 1800
10

10

10
11

10
12

10
13

10
14

hv

4200/mm,

 

E/E=20000, Cff

 

=4.75-12

2000/mm,

 

E/E=15000, Cff

 

=3.15-8

800/mm, E/E=10000, Cff

 

=2.15-5

SPring-8, E/E=10000
SPring-8, E/E=15000



 

flat energy dependence with all 
gratings including 800/mm blazed

 

 

flux-optimal Cff

 

increases with 
l/mm and energy

 

 

31011

 

to 11013

 

ph/s/0.01%BW 
(experimentally confirmed): 
factor of 10 to 100 flux increase or 
~2 improvement in E/E compared 
to BL25SU@SPring-8
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Refocusing optics

TM: aberrations for large r/r'; minimal sv

 

~ 10 m @ r/r' ~ 1.8 −

 

inacceptable 

 EM: decrease of sv

 

carries on towards  ~ 3.4 m @ r/r' ~ 9 −

 

slitless

 

operation of 
the RIXS spectrometer possible 

-

 

ray tracing: 
focused spot size at the exit slit 14.1m, 
r+r' = 7000 mm, grazing angle 89o, 
/l slope errors 0.5/1.5 rad

 

for 
TM and 1.5/4.5 rad

 

for EM



 

vertical spot size << 10 m required for slitless

 

operation of the RIXS spectrometer

Toroidal vs Ellipsoidal mirror
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Refocusing optics layout

RIXS: maximal demagnification  EM 


 

due to limitation of r' the actual sv

 

~ 3.9 m @ r/r' ~ 5.85

 


 

slope errors are crucial: EM from ZEISS with /l = 1.5/7.5 rad

ARPES: moderate spot size and available r/r'  TM 


 

actual sv

 

~ 10 m @ r/r' ~ 2
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Refocusing mechanics



 

hexapod systems (OXFORD-DANFYSIK): 

-

 

3 translational + 3 soft-axis angular DOFs
-

 

high setability

 

of 1 m and 1 rad
-

 

soft axes: mirror center 100 mm downstream



ADRESSADRESS

Alignment tools: Horizontal beam profile monitor

Exit Slit

YAG Screen

Network camera AXIS210
(IP address)

Network

Control PC



 

EasyLine

 

software (MATLAB):

 -

 

horizontal beam position and FWHM = 
real-time PVs

 

in EPICS control system

 -

 

effective horizontal focusing tool
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Alignment strategies: Vertical focusing scheme



 

Beam position at the slit + aperture matching constrains => 
Ry

FM, zFM

 

and Ry
CM

 

are entangled in one combined focalization motion (CFM) 



 

3 DOFs

 

(Ry
FM, zFM

 

and Ry
CM) reduced to 1 DOF (CFM) parametrized

 

by zFM

 

=> 
-

 

fast and unambiguous focalization

 
-

 

maximal transmission

 
-

 

maximal resolution due center of the optical surface 
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Alignment strategies: Example of focalization

-

 

Typical focalization curve (1-2 hrs) 



ADRESSADRESS

RIXS endstation: Technique

hvin hvout (E,)

•
 

E difference between hvin

 

and hvout

 

 spectrum of low-energy excitations 
in correlated materials
• probing depth ~300 nm: bulk properties, buried nanostructures…
• element specific electronic structure

Em

hvin

EfEi

E

hvout
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High-resolution RIXS endstation: Concept 



 

hv = 300-1800 eV: 
- N K-edge, Ga,Ge,As

 

L-edges: microelectronics…

 
-

 

TMs L-edges, REs

 

M-edges: correlated systems 
(superconductivity, CMR, metal-insulator 
transitions…)

 

 E ~100 meV @ 1 keV to go from d-d and f-f 
excitations towards magnons

 

and phonons

 



 

variable scattering angle to study q-dependences

100 meV 2 eV 4 eV

Phonons
Magnons
Spin-flips

Orbital excitations
dd-excitations

CT excitations
Mott gap

vacuum 
chamber

rotating platform

incident light

spectrometer

scattering 
angle
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RIXS endstation: Super Advanced X-ray Spectrometer (SAXES)  

detector (L-N2

 

cooled CCD)
on movable frame

spherical 3200 lines/mm VLS grating 
(chamber with in-vacuum mechanics)

entrance 
slit

SAXES
Swiss Light Source

Politecnico di Milano
&



 

optics by Politechnico

 

di

 

Milano (group of G. Ghiringhelli

 

and L. Braicovich)


 

resolving power E/E ~ 12000 @1 keV

G. Ghiringhelli

 

et al, Rev. Sci. Instrum. 77 (2006) 113108
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RIXS endstation: Rotating platform/vacuum chamber 

Vacuum chamber


 

20o

 

steps in angle


 

L-He2

 

cryostat

Rotating platform on air cushions


 

rigid I-shape (bending<7 m) Actuator


 

5 DOFs, accuracy 5 m
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A case study: 'telephone number' 
compound Sr14 Cu24 O41 by Cu L3 -edge RIXS

Kojima et al, JES 117 (2001) 237

1D spin-chains:
FM exchange J~10 meV

quasi-1D spin ladders: 
AFM exchange J~100 meV
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J. Schlappa, T. Schmitt et al, 
PRL 103 (2009) 047401
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Case study: q-dispersion of magnetic excitations in 
'telephone number' compound Sr14 Cu24 O41 by Cu L3 -edge RIXS



 

two-triplon

 

excitations in the ladder subsystem (AFM exchange J~100 meV)
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RIXS vs Inelastic Neutron Scattering (INS)

RIXS is complementary to INS on the energy scale and q-transfer region



 

flat

 

cross-section

 

over

 

the

 

full

 

BZ
 E ~100 meV

 

and E-scale

 

up to 3 eV

RIXS from

 

Sr14

 

Cu24

 

O41
INS from

 

La4

 

Sr10

 

Cu24

 

O41
S. Notbohm

 

et al, PRL 98 (2007) 027403



 

low

 

sensitivity

 

for

 

small

 

q-transfer
 E ~10 meV

 

and E-scale

 

up to ~ 500 meV
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Design of spherical VLS grating spectrometers

Step 1: Optimization of the grating parameters for reference E=930eV



 

Dedicated ray-tracing software TraceVLS

 

allowing fast optimization of the grating 
parameters and spectrometer geometry



 

Example: Model spectrometer with E/E=15000 @ 930 eV

Groove density 

-R and a1

 

: the focal distance r1

 

and focal curve 
inclination

 



 

(analytically) 

 

inclination 
reduces the effective detector pixel size

-

 

a2

 

: profile asymmetry (coma) cancellation 
(numerically) –

 

bug in SHADOW fixed in 2010!

-

 

a3

 

: reduction of symmetric broadening 
(numerically) 

 

increase of aberration-free 
vertical acceptance by a factor of 5

a2

 

, a3

 

= 0

a2

 

, a3

 

≠

 

0

a2

 

≠

 

0

  ...3
3

2
210   aaaaa
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

 

symmetric profile can be maintained 
for any energy by adjustment of r1

 

or 



 

How do we adjust r1

 

, , r2

 

to keep symmetric profile and thus best resolution?

Step 2: Optimization of the spectrometer geometry away from  reference E

Design of spherical VLS grating spectrometers

E = 530 eV
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Online software to determine the optimal spectrometer settings



 

the focal and symmetric-profile 
focal , r1

 

and r2

 

in a fraction of 
second
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Perspectives  of RIXS instrumentation: 
hv2-spectrometer with simultaneous detection in hvin and hvout

 imaging in vert

 

plane + dispersion in horiz

 

plane 
 full 2D-map of RIXS intensity in one shot of parallel 
detection in hvin

 

and hvout

 

(hv2 spectrometer)



 

critical: extreme refocusing in horiz

 

plane to achieve high 
resolution in hvout

 

(                           )



 

combination with XFEL:
-

 

round beam reduces the horiz

 

spot size
-

 

efficient time-resolved measurements with full I(hvin

 

,hvout

 

) 
snapshot in one instant of time: crucial for chemical reactions

CCD detector

sample
plane-elliptical 
KB refocusers

plane-elliptical 
focuser

VLS grating

monochromator 
focal plane

hvin

hvin

hvout

sourcesource
out xE 

V.N. Strocov, J. Sync. 
Rad. 17 (2010) 103



ADRESSADRESS

ARPES endstation: Concept 



 

soft X-rays vs

 

hard X-rays to keep angular resolution

 

 

combining with PLD

 

 

electronic structure of complex materials (perovskites…) 
with enhanced bulk sensitivity

 

and resolution in 3-dim k-space 

hvin
eout (E,)



 

hole spectral function A(E,k) 
resolved in E and k
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Reason 1: Surface sensitivity

•

 

2-3 times increase in probing depth 
 through the distorted surface layer towards 
deeper atomic layers with bulk properties

 soft-X-ray energy range to increase bulk sensitivity

bu
lk

 se
ns

iti
vi

ty
in

cr
ea

se
s w

ith
 h

v

Mott-Hubbard metal-insulator transition in V2 O3
(Mo et al 2003)

•

 

quasiparticle

 

peak in the paramagnetic 
phase develops only in bulk

Why going from UV to Soft-X-Rays ?
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Reason 2: Improvement of the intrinsic resolution in k

 soft-X-ray energy range to increase the resolution in k

•

 

photoelectron wavefunction

 

confined by  
broadening k

 

=-1 

 

intrinsic k

 

resolution

k


im
pr

ov
em

en
t
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Reason 3: Free-electron final states

multiband final states (different k

 

)

-

 

Final-state E(k) is required to resolve valence band E(k) in 3-dimensional k

•

 

failure of free-electron approximation despite the FE nature of Al and rather high hv 
 soft-X-ray energy range for free-electron final states

-

 

How far in energy do the non-free-electron effects carry on?

Al(100) normal-emission ARPES 
(Hoffman et al 2002)

•

 

Further reasons: Simplified matrix elements …
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

 

the crossection

 

problem is alleviated by 10 to 100 flux increase vs

 

BL25SU @ Spring-8

Problem: Photoexcitation crossection



 

notorious problem of SX-ARPES: 
dramatic decrease of crossection, 
especially for s- and p-states
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Implementation of the SX-ARPES endstation

Experimental geometry concepts: Optimal light incidence angle



 

photoelectron yield peak at glancing angles ~2.5o



 

improvement of 2.1 @ 20o

 

compared to standard 45o

Photoelectron Yield 

 

(1-R)/ hv 

(e <<hv )
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Experimental geometry concepts: Alignment of the light footprint



 

rotation around the horizontal axis to align the horizontal and vertical spot size


 

100 m slit => grazing incidence angle ~ 13.5o

74 m

~ 20 m @ 100 m slit
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

 

Grazing incidence at 20o

 

// smaller 
vertical footprint with horizontal 
manipulator axis



 

2 operation  modes: 
-

 

analyser

 

slit // beam (selection rules)

 
-

 

analyser

 

slit  beam (k-space sampling)



 

Photoelectron Display Analyser

 

(PDA)
~ photon-excitation LEED

Experimental geometry
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Technical realization


 

analyzer PHOIBIOS 150 
(SPECS)



 

manipulator with 3 
translation (resolution 5m) 
+ 3 angular (resolution 0.1o) 
DOFs

 

and L-He2

 

cooling to 
10K



 

analysis (AC) + transfer 
(TC) + preparation (PC) 
chambers + Load Lock (LL)



 

sample preparation by 
cleavage, ion etching, thin 
film deposition



 

only one sample transfer 
for cleaved samples



 

compatibility with PLD 
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Status



 

10.5 K achieved



 

30 sec data acquisition @ hv=930 eV, combined E=100 meV



 

Expert user operation from the end 2010

EF

 

of Au @ hv = 930 eV
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Summary
High-resolution soft-X-ray ADRESS beamline operating in the energy range 300 -

 

1800 eV:



 

Fixed-gap undulator
-

 

circular and 0-180o

 

variable linear polarizations



 

Collimated-light PGM with stigmatic focus
-

 

E~30 meV@1 keV 
-

 

flux up to 1013

 

photons/s/0.01%BW with optimized gratings (minimal l/mm, 
blazed/lamellar, optimized profiles, flux-optimal Cff

 

)



 

Ellipsoidal refocusing optics
-

 

spot size below 4 m



 

RIXS spectrometer 
-

 

E~70 meV@1 keV (energy scale of magnetic etc. excitations) 
-

 

variable scattering angle (momentum dependences)
-

 

high-resolution RIXS complementary to INS
-

 

further developments to optimize the acceptance and resolution 



 

ARPES spectrometer
-

 

optimized experimental geometry (grazing light incidence, horizontal manipulator axis)
-

 

rotatable analyser

 

(selection rules vs

 

k-space sampling)
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