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Methods are derived for calculations useful in the operation of 3- and 4-circle X-ray or neutron single- 
crystal diffractometers. These include: (1) establishing the sample orientation from the cell parameters 
and the observed angles for two reflections, or from the observed angles for three reflections only, (2) 
calculating the angles for observing a given reflection either in a special setting or at a specified azimuthal 
angle, (3) obtaining the vectors needed for calculating absorption corrections, and (4) u sing observa- 
tions of several reflections to refine cell and orientation parameters by the method of le ast squares. 

It appears that 3- and 4-circle X-ray or neutron diffrac- 
tometers will be used increasingly in the next few years. 
For this reason it seems desirable to present in a com- 
pact way some mathematical procedures that can be 
used with these instruments to establish sample orien- 
tation and to calculate setting angles. All of the tech- 
niques described here have been tested and found useful 
in our work with the Oak Ridge automatic 3-circle 
neutron diffractometer (Busing, Smith, Peterson & 
Levy, 1964) and the Oak Ridge computer-controlled 
4-circle X-ray diffractometer (Busing, Ellison & Levy, 
1965). Some of these calculations have been discussed 
in a less general way by others (Furnas & Harker, 
1955; Arndt & Phillips, 1957; Willis, 1961 ; Santoro & 
Zocchi, 1964; Wooster, 1964; Rollett, 1965). 

Calculations of this type will almost certainly be 
performed by means of a high-speed computer, and 
algorithms for many of the procedures are presented 
elsewhere (Busing & Levy, 1966). Matrix arithmetic is 
used extensively because the expressions in expanded 
form would often be too cumbersome to be useful. 

Definition of diffractometer angles 

The instrument arrangement which we will take as 
standard is illustrated schematically in Fig. 1 (a), which 
shows the instrument axis as vertical. Perpendicular to 
this axis and passing through the instrument center is 
a horizontal plane. The primary beam lies in this hori- 
zontal plane and is directed at the sample which is 
located at the instrument center. The counter also lies 
in the horizontal plane and rotates about the instru- 
ment axis to make an angle 20 with the primary beam 
direction. The instrument angles may be adjusted so 
that a diffracted beam is horizontal and enters the cen- 
ter of the counter. 

Moving the counter through an angle of 20 causes 
the crystal orienter and sample to turn through an 
angle of 0 about the vertical axis. The orienter may also 
be rotated independently through an additional angle co 
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about the same axis. In this way the 2' axis which lies 
in the horizontal plane is positioned to make an angle 
of 0+6o with the primary beam direction. The reflect- 
ing-plane normal (scattering vector), which bisects the 
angle between the diffracted beam and the reverse 
primary beam, thus makes an angle of co with the plane 
of the 2' ring. 

The ~0 shaft is supported from the 2' ring which per- 
mits the (0 axis to be set at an angle 2" from the vertical 
instrument axis. The sample is assumed to be rigidly 
attached to the ~0 shaft so that it can be turned about 
this axis. 

The diffractometer with all angles set to zero is 
shown schematically in Fig. l(b). The senses of O, 20, 
co, and 2' are defined by Fig. l(a), which shows the in- 
strument with these angles in the first quadrant. The 
zero position for ~0 is chosen arbitrarily, and the figure 
shows the direction of rotation which increases this 
angle. 

Also shown in Fig. l(a) is the angle ~u which measures 
the rotation of the sample about the normal to the 
reflecting plane of interest. With this type of diffrac- 
tometer ~u motion is achieved not by the rotation of a 
single shaft but rather as the result of a combination 
of changes in co, 2", and (p. The choice of zero for gt will 
be discussed below. 

These definitions will be assumed throughout this 
paper, but the results can be applied to instruments 
with other conventions by making the appropriate 
transformations. The 3-circle diffractometer can usually 
be regarded as a special case for which co is constrained 
to be zero. 

Coordinate transformations 

Let v be the column vector describing some physical 
vector v in terms of the right-handed reciprocal lattice 
vectors b~ so that 

3 
v= Z ribs. (1) 

i = 1  

It will be convenient to define several systems of right- 
handed cartesian axes which may also be used to de- 
scribe v. 
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Let vc be the description in terms of the crystal car- 
tesian axes which are attached in some way to the 
reciprocal lattice. If we choose the x axis parallel to b~, 
the y axis in the plane of bl and b2, and the z axis 
perpendicular to that plane, then 

ve = B v (2) 
where 

(! 1 b2 cOS fl3 b3 cOs fl2 ) 
B = b2 sin f13 - b3 sin/32 cos ~1 • (3) 

0 1/a3 
Here the ai's and ei's and the b~'s and fl~'s are the direct 
and reciprocal lattice parameters, respectively. This ex- 
pression is related to transformations discussed by 
Patterson (1959a) and by Rollett (1965), and although 
our crystal cartesian system is different from those 
chosen by these authors, nothing in this paper except 
the above expression for matrix B depends upon this 
choice. 

Let the ~0-axis system be a set of cartesian axes rigidly 
attached to the ~0 shaft of the instrument. When all in- 
strument angles are set to zero this system has the 
orientation shown in Fig. l(b) with the x axis along the 
scattering vector, the y axis in the direction of the 
primary beam, and the z axis in the vertical instrument- 
axis direction. 

Let U be the orthogonal matrix which relates this 
~0-axis system to the crystal cartesian system so that 

% = U  re. (4) 

U will be called the orientation matrix since it depends 
on the way in which the crystal has been mounted and 
also on the arc settings if a goniometer head is used. 
U may readily be derived for certain special orienta- 
tions, and in later sections we will consider general 
ways of obtaining U. 

In a similar way let us define three more cartesian 
systems attached to the Z, co, and 0 axes, respectively, 
and coincident with the ~-axis system when all instru- 
ment angles are zero. The vector I, is transformed to 
these systems as follows: 

where 

v x = ~  % , (s) 
vo,=X v x , (6) 
v0 = f~ vo,, (7) 

[ cos(o s i n q  0\ 
* =  l-si0n ~0 cos~, 

0 
(8) 

and 

( coax 0 sin 0ZI 
X =  1 

\ - s i n z  0 cos ,~/ ,  
(9) 

cos co sin o9 ! )  
f~= - s i n o 9  cos o9 

0 0 . 
(10) 

Finally let us define a laboratory system fixed with re- 
spect to the primary beam and a 20-axis system at- 

tached to the counter shaft. Again these cartesian axes 
will be chosen to coincide with the ~0-axis system when 
all the instrument angles are zero. A vector v is trans- 
formed to these systems as follows: 

v t = O  v0=N v~o (11) 
V2o=O vo=M vo, (12) 

where 

O =  - s i n  0 cosO (13) 
0 0 , 

( c o s y  s i n v  i )  
N = O f ~ =  - s i n  v cosv  (14) 

0 0 
with v=co+0,  
and (cos. sin. 

M = t ~  ~ = -s in~u cos/~ (15) 
0 0 

with/~ = co-  O. 
All angles except Z can be considered to be left-handed 

rotations about their respective axes. 

/ -  ....... / 
PRIMARY / I / I I i 

(o) 

/ ~ .IL._~,,- 

U 
(b) 

Fig. ]. Schematic representation of a 4-circle diEractometer. 
(a) The configuration when each instrument angle has a value 
in the first quadrant.  (b) The instrument with all angles set 
to zero. The coordinate axes are those of the ~0-axis, z-axis, 
co-axis, 0-axis, 20-axis, and laboratory systems which are 
all coincident under these conditions. 
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Basic diffractometer equations 

Throughout this paper we will assume the following 
ideal conditions: a perfect diffractometer, a centered 
point sample with no mosaic spread, and a point 
source of monochromatic radiation. The deviations 
from these assumptions which are found in practice 
usually do not invalidate the calculations to be de- 
scribed. One exception is the presence of the a-doublet 
in the X-ray spectrum, the effect of which will be men- 
tioned in the section on least-squares refinement. 

To observe a reflection in the ideal diffractometer 
setting shown in Fig. 1 (a) it is necessary for 0 to satisfy 
the Bragg equation and for the plane normal to lie 
along the x axis of the 0 coordinate system. If h, k, 
and l are the indices of the reflecting plane then the cor- 
responding column vector in the reciprocal lattice sys- 
tem is 

The length q of this vector which is the reciprocal of 
the interplanar spacing i n / k  is readily found from its 
components in any one of our cartesian systems. For 
example 

q=(h~ + h22 + h23) ÷ (17) 
where 

hc=B h. 

The Bragg equation is then 

sin 0 =  2q/2. (18) 

The plane normal will have the desired direction if 

has the form 

h 0 = ~  X • U B h (19) 

Equations (17) to (20) can be regarded as the funda- 
mental equations for this diffractometer. 

Evaluating the orientation matrix 

We will now show how the orientation matrix U can 
be obtained from the observation of two reflections 
from non-parallel planes of known indices provided 
that the cell parameters are known. For reasons which 
will become apparent we will call these two reflections 
the primary and secondary orienting reflections. Let 
their indices be hi and h2, respectively. 

From the observation of the instrument angles co, Z, 
and y which center the diffracted beam in the counter 
we can obtain u~, the description in the y-axis system 
of a unit vector which has the direction of the plane 
normal: 

u ~ = ~ X ~ u 0 = ~ X ~  (21) 

or in expanded form: 

cos co cos Z cos y - s i n  co sin y \ 
u~= cos co cos,z sin y + s i n  co cos y ) (22) 

cos co sin Z 

In this way two unit vectors ulv and u2v can be ob- 
tained from the observed angles of the primary and 
secondary orienting reflections, respectively. 

Since the indices and cell parameters are known we 
can calculate the scattering vectors in the crystal car- 
tesian system: 

hie = B hi } (23) 
h2e = B h2. 

Ideally the desired matrix U should perform the trans- 
formations 

h l~=U hlc } 
and (24) 

h2~ = U h2c, 

so that the calculated hl~ and h2~ have the directions 
of the observed ux~ and u2,, respectively. However, be- 
cause of experimental errors in the angle measurements 
or uncertainties in the cell parameters, it is not in 
general possible to find an orthogonal matrix U which 
satisfies both conditions. That is to say, the angle sub- 
tended by hlc and h2c may in general differ slightly 
from that subtended by u~ and u2~. 

In order to avoid this difficulty we will require that 
h~ be parallel to u~ as before, but h2~ will only be con- 
strained to lie in the plane of u1~ and u2~. Thus the 
primary reflection determines the direction of a vector 
in the crystal, and the secondary reflection establishes 
an angle of rotation about this axis. 

Define a right-handed orthogonal unit-vector triple, 
tic, t2c, t3c, in the crystal cartesian system so that tic is 
parallel to hie, t2c lies in the plane of hlc and h2c, and 
t3c is perpendicular to this plane. Define another such 
triple, t~,  t2~, t3~, in the y-axis system based in the 
same way on u~ and u2~. Then, since these two unit- 
vector triples can be exactly superimposed on each 
other, the desired orthogonal matrix U will satisfy ex- 
actly the equations 

tn~ = U tnc; n = 1, 2, 3 .  (25) 

These three vector equations can be written as one 
matrix equation 

T~ = U Tc (26) 

where Tc is the matrix with columns tic, tzc, and t3e and 
T, is similarly constructed from tl,, t2,, and t3,. Then 

U = T , T c  -1 = T,'Fc (27) 

since Te can be shown to be orthogonal. 

A procedure for use 
when the lattice parameters are unknown 

When the unit-ceU parameters are unknown it is still 
possible to obtain the matrix UB if the setting angles 
can be observed for three reflections with known (or 
assumed) indices. Given 20~, co~, Xt, and y~ for reflec- 
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tion i, we can compute the scattering vector in the 

~0-axis system" hie = (2sin 01/2)ui e , (28) 

where ule is obtained by equation (22). For each of the 
three reflections the matrix UB must perform the trans- 
formation 

hie = U B hi ,  (29) 

where hi is the vector of indices. Then if H e is a matrix 
made up of the three column vectors hi e, and if H is 
similarly constructed from hi, we have 

H~ = U B H (30) 
and 

U B = H  e H -1 . (31) 

The reflections chosen must correspond to reciprocal 
lattice vectors which are not coplanar or the matrix H 
will be singular. The indices should be assigned so that 
the vectors can be described with reference to a right- 
handed coordinate system, and it can be shown that 
the determinant IU BI (which has an absolute value 
equal to the unit cell volume) will be positive if and 
only if this condition is met. 

When the matrix U B has been obtained it is pos- 
sible to derive from it the corresponding cell param- 
eters. Let us compute the matrix 

U B U B = B U U B = B B .  (32) 

It can be shown that g B = G -x (33) 

where G -1 is the reciprocal metric tensor with elements 

( G - 1 ) i j = b i  . b j  . (34) 
Then G is the metric tensor (see, e.g. Patterson, 1959b) 
with elements 

Gij" = a t .  aj (35) 

and the direct lattice parameters are given by: 

at= G~t } 
and (36) 

cos eel = Gje/aja~; i # j  # k # i .  

Angle calculations for special cases 

Once the matrix UB has been evaluated it is possible 
to obtain 

h e = U B h (37) 

for any set of indices h, and ways of computing in- 
strument angles which bring this vector into the ideal 
reflecting position will now be discussed. With a four- 
circle instrument this reflecting condition can be estab- 
lished in an unlimited number of ways corresponding 
to various values of V, the angle of rotation of the 
sample about the scattering vector. It will be useful 
to consider two special cases in which one of the in- 
strument angles is fixed at a convenient value. 

First let us consider the bisecting position in which 
co is constrained to be zero so that the plane of the 
2" ring bisects the angle defined by the reverse primary 
and diffracted beams. This arrangement permits access 
to all reflections with 0 below an upper limit, and it is 

the only position available with most three-circle in- 
struments. 

Assume that the diffractometer initially has all angles 
set to zero. The vector h e can be brought to the scatter- 
ing position by first rotating p to bring it into the plane 
of the Z ring and then changing Z to bring it to the 
horizontal plane. The required angle changes are 

~0 = atan (he2, he1 ) / 
and J (38) 

(hel +he2) ]. z = a t a n  [he3 ' 2 2 

In the above equations and throughout this paper 
the expression 

c~=atan (y, x) (39) 

defines an angle a =  arc tan (y/x) in the quadrant for 
which the signs of sin c~ and cos e are those of y and x, 
respectively. 

The expressions given above yield angles with 
-90°_<Z_<90 ° because the square root is taken as 
positive. An alternative setting 

fp'= 180 o + ~0 } (40) 
Z ' = 1 8 0 ° - Z  

corresponds to a rotation of 180 ° about the scattering 
vector (~u' = 180 o + V). 

In the bisecting position the Bragg angle which can 
be reached may be limited by the fact that the Z ring 
lies between the counter and the source. Higher Bragg 
angles can be reached if o) is allowed to take values 
which turn the Z ring past the counter so that its plane 
is more or less parallel to the reflecting plane. Usually 
the greatest range can be obtained by constraining X 
to be 90 o. 

Consider the instrument with 2' = 90 o and the other 
angles set to zero. The vector h e can be brought into 
the horizontal plane by rotating ~0 and it can then be 
brought to the scattering position by changing co. The 
expressions for these angles are 

~0 = atan (he1, - he2 ) 
and [ (41) 

c o = a t a n [ -  2 2 -~ (hel + he2) , h~o3] . J 

Compared with the bisecting position these settings 
correspond to a 90 ° rotation about the scattering 
vector. 

Reflections with vectors nearly parallel to the ~a axis 
are inaccessible in this arrangement because of inter- 
ference between the 2' ring and the counter or primary 
beam. The apex angles of the cones which are lost be- 
come large at low Bragg angles. Three alternative set- 
tings are available: 

1 2 3 

(o' 180°+(o ~0 180°+~0 
Z' 90° - 9 0 °  - 9 0 °  
co' -co  180°-o)  180°+o) 
~u' 180°+V 180°+V V 

but the use of these may not reduce the amount of 
interference significantly. 
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Angles for a specified azimuth 

We will now consider the problem of comput ing the 
diffractometer settings for some specified value of the 
azimuthal  angle, V. Let us define an instrument-angle 
matr ix  

R=K~ X @ (42) 

which transforms a vector from the (a-axis system to 
the 0-axis system. For  the vector to be in the scattering 
position we must have 

R h~ = h 0 = (43) 

Choose some diffractometer setting which satisfies 
this condit ion and define V = 0  for this configuration. 
We can then evaluate 

R0 = ~0  X0 ~ 0 .  (44) 

In order to rotate the sample about  the reflecting-plane 
normal  through an angle ~, measured from this zero 
position we generate a new matrix 

R =  ~F R0 (45) 
where 

(1  0 0 ) 
• -- 0 cos ~ sin ~ (46) 

0 - s i n  V c o s v  

The problem then is to extract from this or thogonal  
matr ix  R the values of  the instrument  angles co, Z, and ~0 
to which it corresponds. 

Expanding equation (42) we have: 

(_+cos(co_+(a) s i n ( c o + ~ ) i )  
R = -T- sin (co _+ (a) cos (co + q~) 

0 0 _+ 
(5o) 

Thus the co and (0 motions have become redundant ,  
and this can easily be understood in terms of  the in- 
s trument geometry when Z is zero or 180°. It can be 
shown that  the continuity of an azimuthal  scan can 
best be attained by selecting co = 90 ° for this singular 
case. The matrix then becomes ( sin  0) 

R =  T-cos ~ Ts in  9 0 (51) 
0 0 +1 

and we have 
(a = atan ( -  Rib R12) l 

and l (52) 
o9_--= 90 ° 

The t ransformations (49) are still valid for this singular 
case. 

Now let us consider in more detail the choice of  the 
instrument  setting at which we define ~u to be zero. 
We could, for example, use the bisecting position as a 
reference, and then we would have 

R0 = X0 ~o  (53) 

since COo =0 .  But this choice has the disadvantage of  
depending on the sample mount ing  so that  the defini- 
tion of V would not in general be comparable  for dif- 
ferent specimens. To overcome this l imitation we will 
describe a way of defining the reference posit ion in 
terms of  the crystal lattice itself. 

cos o9 cos Z cos ~ -  sin o9 sin ~0 
R = - sin 09 cos 2" cos t# -  cos 09 sin 

- sin Z cos (a 

cos co cos Z sin ~ + sin o9 cos 
- sin 09 cos Z sin (p + cos 09 cos 

- sin 2' sin (a 

cos co s i n ! )  
- s i n  09 sin 

cos 
(47) 

and we see that  

z = a t a n  [(R]I + R322) ~', R33], ] 
~0 = atan ( -  R32, - R33 ,  l (48) 

and 09 = atan (R13, - R23) • 

(The more obvious expression, 2" = arc cos R33, is not 
used because round-off  could cause excessive errors in 
2' when R33-~ + 1.) By taking the positive square root  
in the expression for Z we are choosing sin Z > 0 so that  
0 -<Z< 180 °. An equally valid solution for the same 
value of V is 

Z ' = - Z  } 
= 180 q~ ~0' ° +  (49) 

co'= 180°+o9.  

In practice it is usually the range of co which is limited 
by the mechanics of  the instrument.  The procedure 
should be to compute angles using equations (48), 
test co, and make the t ransformations (49) if it is out 
of  range. If  both solutions are out  of range then the 
specified value of  V is not  accessible for this reflection. 

A singular case occurs if R33 = + 1. Then cos Z = + 1, 
sin Z = 0 ,  and the matr ix becomes 

Let h be the plane normal  of the reflection to be 
observed and let us specify a reference vector h0 which 
is not  parallel to h. Then choose as the zero of ~, that  
setting for which h lies in the scattering direction and 
h0 lies in the horizontal  plane of the instrument  on the 
same side as the diffracted beam (i.e., so that  in the 
0-axis system its z component  is zero and its y com- 
ponent  is positive). 

The computa t ion  of  R0 based on this definition is 
analogous to the determinat ion of U described above. 
The vectors 

ho = U B h  } 
and (54) 

h0~ = U B h0 

are first evaluated. Then the matr ix T o is constructed 
with columns equal to ti~, t2~, and t3~, the components  
of a r ight-handed or thogonal  unit vector triple defined 
to have tl~0 parallel to h~, t2~o in the plane of  h~ and 
h0~, and t3~ perpendicular to this plane. 

Now we note that  our definition of  zero V requires 
the or thogonal  matr ix  R0 to rotate  this unit vector 
triple into coincidence with the axes of  the 0 coordinate 

AC22-2  
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system. The matrix which describes these axes in the 
0-system is just the identity matrix so that we have 

RoT~ = 1 
and 

R0=T~-I = ' r ¢ .  (55) 

Vectors for calculating absorption corrections 

In order to calculate absorption corrections it is gen- 
erally necessary to compute for each reflection the 
direction cosines of the diffracted beam and of the 
reverse primary beam referred to some coordinate sys- 
tem in which the sample shape is described (see, e.g., 
Busing & Levy, 1957). The (0-axis system may often 
be a suitable reference system, and the required direc- 
tion cosines are just the components of the appropriate 
unit vectors in this system. Let p and d represent unit 
vectors in the primary and diffracted beam directions, 
respectively, so that 

(Z) Pl = d20 = (56) 

Then the required vectors are 

- p ~  = - q ) X N  p~ / 
and ~ - ~ l (57) 

d~, =(I) X M  de0, 
and expanding we obtain 

(sin(O+co)cosT.cos(o+cos(O+co)sin~) 
sin (0 + co) cos 7. sin (O ~ cos (0 + co) cos (58) 
sin (0 + co) sin 2: 

where the upper and lower signs apply to -p~, and do, 
respectively. 

If a sample has natural faces it may be preferable to 
refer its description to the crystal cartesian system. In 
this case the desired vectors, - p c  and de, are readily 
obtained by multiplying -p~  and d r by [l. 

Refinement of lattice and orientation parameters 

So far we have established the matrix UB either from 
known cell parameters and observations of two re- 
flections or from observations of three reflections alone. 
A better procedure would be to observe angles for 
several reflections and to use the method of least- 
squares to refine the cell parameters and orientation 
parameters simultaneously. Computer programs are 
available (see, e.g., Busing & Levy, 1962) which, when 
given a list of trial parameters, a set of observations, 
and a procedure for calculating the quantity compar- 
able with these observations, will refine specified par- 
ameters by the method of least-squares. Analytical ex- 
pressions for the required derivatives are not needed 
since these are computed numerically. 

The parameter list includes the three axial lengths 
and three interaxial angles of  the direct unit cell. In 
some eases these will be subject to constraints imposed 

by the symmetry of the crystal system. Angles with 
fixed values of 90 ° or 120 ° are simply not varied in the 
least-squares procedure. Two or more parameters can 
be constrained to be equal by choosing one of them 
to be varied and setting the others equal to it. Since 
numerical derivatives are obtained by recalculating the 
function after adding an increment to the correspond- 
ing parameter, these derivatives will be correct if the 
constraint is applied immediately after each parameter 
is incremented. 

The wavelength may also be included in the param- 
eter list since it is not always precisely known (especially 
in neutron diffraction work). It is clear, however, that 
the wavelength is redundant with the axial lengths and 
the four of these parameters cannot be adjusted simul- 
taneously. 

The sample orientation is represented in the param- 
eter list by the six angles cob ZI, (Ol, 0.)2, X2, and (O2 for 
the primary and secondary orienting reflections. Only 
three of these angles can be varied, however, since only 
three parameters are required to define orientation. 
The variables must include two angles of the primary 
reflection chosen to define the direction of this vector, 
and one angle of the secondary reflection chosen to 
measure rotation of the sample about this primary 
vector. For example, if cob X1, coz, and 7.2 are all near 
zero and if (Ol and (O2 differ by about 90 °, then Za, (oa, 
and 7.z or cob 7.1, and 7.2 are suitable variables. 

After refinement, the angles col, 7.a, and (Ol define the 
best estimate of the direction of ha, and the calculated 
angles for this reflection based on the new parameters 
will correspond exactly to this vector. The angles co2, 
1'2, and (O2 no longer define h2, however, because only 
one of them has been varied. Instead they represent a 
vector direction which will yield the best estimate of 
the orientation matrix U. Calculation of angles for hz 
will correctly yield the best estimate of a setting for this 
reflection, but these angles will generally not be the 
same as the refined parameters. 

A reciprocal lattice vector has three independent 
properties consisting of two directional parameters and 
a length which is related to the corresponding Bragg 
angle. We will consider six ways of observing these 
variables or combinations of them, identifying these 
ways as observations of types 1 to 6. For each type of 
observation we will show how the corresponding cal- 
culated value can be obtained from the known in- 
strument settings and the assumed trial parameters. 

In the course of these calculations it will be con- 
venient to distinguish the instrument dial readings and 
their matrices by the subscript d (e.g., (oa and ~ a ) ,  
since these will not in general be equal to the ideal ~. 
angles used earlier in this paper. Similarly, calculated 
angles and their matrices will be identified by the sul~ 
script c. 

Type 1 observations 
Several ways of measuring the Bragg angle are essen- 

tially equivalent to centering the diffracted beam in the 
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counter and using the counter angle, 20a, as the ob- 
servation. The corresponding calculated quantity is 
20c= 20 where 0 is obtained from the trial parameters 
by means of equations (17) and (18). 

Type 2 observations 
If the counter angle is adjusted to center the dif- 

fracted beam horizontally in the aperture, then 20a 
may be used as an observation even though the beam 
may not be centered vertically. 

In deriving the corresponding 20e it will be useful to 
recall the diffraction equation 

d = p  + 2 sin 0 u .  (59) 

Here d, p, and u are unit vectors in the directions of 
the diffracted beam, the primary beam, and the scatter- 
ing vector, respectively. Evaluating d in the laboratory 
system we obtain 

u093) ) [(sin z 2 0 - 4 s i n  E0 2 , 
dz = [ cos 20 (60) 

\ 2 sin 0 u o93 

Here dzz has been derived from the fact that dt makes 
an angle of 20 with pt which is directed along the y axis. 
The component d13  is obtained from the diffraction 
equation (59) remembering that pl3 = 0  and that ut3 = 
u093. Finally da is derived from the requirement that d 
be a unit vector. 

The quantity to be computed is the value of the 
counter angle, 20e, which makes d20,1 = 0. We have 

d2o = Oc Oc d~ 
and 

d2o, 1 = c o s  20cdtl  - s in  20cdl2 = 0 
so that 

(61) 

(62) 

(63) 2 0 c = a t a n  (dll ,  dl2) 

and the desired expression is 

20c = atan [(sin 2 2 0 -  4 sin 2 0 u,ov2~, cos 20] . (64) 

The vector u09 is obtained from the trial parameters and 
the Z and ~ dial settings: 

u09 =Xa@aU B h/q, (65) 

and the Bragg angle 0 is again obtained from equations 
(17) and (18). It is readily seen that the result reduces 
to that for type 1 if the scattering vector is horizontal 
so that Uo~3 = 0. 

Type 3 observations 
It is possible to center the diffracted beam vertically 

in the counter by adjusting Za provided that cog is not 
nearly + 90 o. Let the value of Za for this condition be 
taken as an observation. 

The requirement is that d2o,3 = 0, and from equa- 
tions (60) and (61) we see that this reduces to u093=0. 
Now 

u09 = Xcu z (66) 
and 

u093 = - sin ZcUxl + cos Xcux3 = 0 (67) 

so that the calculated angle is either 

z c = a t a n  (b/Z3 , UX1 ) (68) 
o r  

t 

Yc =Zc+ 180 ° (69) 

Here ux is obtained from the trial parameters and the ~o 
dial setting: 

ux=~a U B h/q . (70) 

In this case and in others to be described below we 
have two widely separated solutions both of which are 
physically reasonable. A simple computational proce- 
dure is to select the result which is closest to the ob- 
servation, adding or subtracting 360 ° if necessary to 
make the quantities comparable. 

Type 4 observations 
Vertical centering of the diffracted beam can also be 

obtained by adjusting ~0a provided that coa is not nearly 
0 or 180 o. Let this r;a be taken as an observation. 

Again the requirement is that u093 = 0, but Za is known 
and ~0e is to be calculated. We have 

u09=Xa ~e u~ (71) 
and 

uo~3 = - sin Za (cos ~0cu~l + sin ~ocu~2) + cos Xau~3. (72) 

Then the equation for ~0e is 

sin Zau~l cos ~0c + sin Xau# sin (Pc = cos Xau~3 (73) 

where 
u~ = U  B h/ q . 

Equation (73) is an expression of the form 

e cos ~0e+fsin ~0e=g (74) 

which has solutions ~oc = r/_+ y ] 

where [ (75) 
r/= atan (f, e) 

y =  atan [(e2+ fZ -g2)  ~, g] . 

Again the appropriate solution is chosen as for ob- 
servations of type 3. The two solutions become com- 
plex or equal if e2+fZ-g2<O, but this does not occur 
if the type of observation is chosen in a sensible way. 

Observations of types 5 and 6 
Consider the observation that the Bragg condition 

is satisfied so that the intensity of the reflection is 
maximized. It is important to note that this condition 
can be observed with configurations other than that 
of Fig. 1 (a) if the counter aperture is large enough. The 
requirement is only that the scattering vector u makes 
an angle of 90°+  0 with the primary beam direction, 
that is 

ut2 = - sin 0 .  (76) 
N o w  

u~=Neu09 (77) 
and 

U l 2  = - -  sin veu~ol + cos veu092 (78) 

so that the condition becomes 

u09z cos ve-u~ol sin vc = - s i n  0 .  (79) 

A C 2 2 - 2 "  
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Here u,o can be evaluated from the trial parameters and 
instrument settings: 

uo~ = Xa aP a U B h / q ,  (80) 

and 0 is calculated from equations (17) and (18). 
Equation (79) has the form of (74) and solutions for 
ve are given by (75). 

Let a type 5 observation be the value of coa which 
establishes the Bragg condition when 20a is fixed. Then 
the corresponding calculated value is 

coo = vc-  20a/2. (81) 

Let a type 6 observation be the value of 20a which 
establishes the Bragg condition for a given coa. Then 
the calculated quantity is 

20c= 2(vc-coa) . (82) 

In each case there will be two computed values cor- 
responding to the two solutions for vc, and the ap- 
propriate one is selected as described above. 

We have used three different schemes for making 
observations for least-squares refinement. With a 
4-circle diffractometer it is possible to vary coa to estab- 
lish the Bragg condition while centering the reflection 
vertically in the counter by adjusting Xa or pa. The 
reflection can then be centered horizontally by chang- 
ing 20a while using a compensating coa motion to hold 
the crystal fixed in the laboratory system. The resulting 
settings are used as three observations of types 2, 3 or 
4, and 5, and both the cell parameters and orientation 
parameters are adjusted. In practice it makes little dif- 
ference if the 20a measurement is used as a type 1 ob- 
servation rather than type 2. 

Measurements of the Bragg angle can be used as 
type 1 observations for the determination of cell par- 
ameters. Such observations contain no information 
about the orientation and the orientation parameters 
should not be varied. In X-ray work it is difficult to 
assign an effective value to 2 unless the c~-doublet is 
resolved. For the most accurate work, therefore, the 
observations should be limited to regions of high Bragg 
angle. 

Observations of type 6 can be extracted from the 
output data of any 3- or 4-circle instrument which 
records the intensity profile for a 0-20 scan. For several 
years we have routinely obtained such observations 

from the paper-tape output of our 3-circle neutron 
diffractometer and used them to improve the cell and 
orientation parameters for subsequent angle calcula- 
tions. 

In principle it is possible to include in the list of 
variables parameters which measure the systematic er- 
rors of the experiment. These would include angular 
errors such as scale zero corrections or inaccurately 
directed instrument shafts as well as displacement er- 
rors due to non-intersecting axes or a poorly centered 
sample. Although we have found the adjustment of 
certain error parameters to be useful, we will present 
no further discussion of the method at this time. 

Some of the methods described here were derived 
while one of the authors (WRB) was Honorary Re- 
search Fellow, Department of Chemistry, University 
of Manchester, for the year 1962-63. 
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