– from Risø to PSI and beyond...

N. B. Christensen, Ch. Niedermayer, K. Lefmann, H. M. Rønnow et al.

Those Blades ...

- Individual blades
- PSD detector
- The RITA philosophy re-think it all:
 - Focusing optics
 - Velocity selector
 - Filters:
 - Be, BeO, Al₂O₃, ...
 - Flexibility / customization

Blade falder af, blomster falder af Guds kærlighed fallerallera

The RITA spectrometer at RISØ

Re-Invented Three Axis spectrometer

- Filtered, velocity selector, focusing front-end
- Back-end tank with multiblade analyser and position sensitive detector
- Modular and flexible
 design of components

KN Clausen, DF McMorrow, T Mason, G Aeppli, K Lefmann *et al*

Modular flexibility: RITA + TAS3

RITAS luke-warm TAS – the need for speed

- why Velocity Selector ?
- Gap between cold and thermal $k_f = 1.54 2.662 \text{ Å}$ $\Delta E = 0.15-1.0 \text{ meV}$
- Remove $\lambda/2$
- Clean beam
- Transmission ~85%
- Rejection 0.1-1%
- Tiltable

Collimators, filters etc.

- Filters
 - Be, BeO, PG, GE-wafers diamond...
 - $\lambda/2$, energy-cut-off (sub-Gaussian tails), broad-band analyser
 - Flexible easy to change \Rightarrow
- Put collimator blades in filters.
 - Conventional straight collimators
 - Radial collimators for focusing configurations.

Multi-blade analysers

- Flexible focusing, resolution tuning, mapping
- By turning the block, we have some freedom in positioning the blades
- Each blade has its own little resolution ellipse in ($q_{||},\,q_{\perp},\,E$)
- "backwards compatible"

Focusing configurations

- A) Standard analyser, size of ellipse depends on collimation.
- B) Focusing in energy
- C) Focusing in Q_{\perp}
- Relaxing focal point on detector gives freedom in Q/E range
- Any combination possible

Focusing in \mathbf{Q}_{\perp}

- Relaxing focusing condition on the detector gives freedom in Q/E range.
- The Q_{\perp} width can thereby be adjusted.

Focusing in energy

- Again, the width in energy and Q|| can be adjusted through the final focal point
- Any combination between energy and Q focusing is possible can even be changed to follow a

Position sensitive detector (PSD)

- Spurion spotter
- Simultaneous background
- Variable size detector
- Even few 'pixels' would work

Mapping configurations

Distinguish blades on PSD

- D1) Multiplexing along Q
- D2) Wider version requires longer analyser-detector arm
- E1) Flat analyser + 2 radial collimators (Broholm on SPINS)
- E2) Multiplexing along E, near-field for narrow E-spacing, farfield for broad E-spacing
- Almost any combination possible

Mapping along energy

- E1) Flat analyser
 +radial collimator
 (SPINS, NIST)
- E2) Multiplexing along E, near-field for narrow E-spacing far-field for broad E-spacing

Mapping along Q

• Two possible configurations

 Wider version requires
 longer analyserdetector arm

RITAS

Monochromatic Imaging mode

Variable 'collimator'

Tails of great Ulysses

- Resolution function has Lorentzian tails
- Graphite has Lorentzian tails \Rightarrow enhanced for Rita

A success: LiNiPO₄

- Ferro-electricity associated with C-IC transition
- What drives transition?
- IC-softening of spin-wave dispersion?

RITAS

Need resolution - can't focus

- Focusing \Rightarrow bad longitudinal resolution
- Small sample \Rightarrow collimator useless
- Imaging mode ⇒ each blade good distance collimation
- 2 scans, 2 hours answer question:
 no IC soft but very flat at all T

Q

- Pixel-trajectory not perfect longitudinal
 - But pretty close (worse at higher E)

LiNiPO₄

- Dispersion in 9 scans
- But, there are no spin waves in IC phase !

Imaging versus focusing

- Exactly same energy resolution
- Σ all blades = focused mode

break-even: $N_f(S+B) = N_i(S+B/N_f)$

Phonons in Pb

- Ef=5.0 meV
- 15sec/pt

Other examples

- α -MnMo4
 - Ef=3.7 meV
 - 9 scans a 60sec/pt

Data-treatment – complicated ?

Where is a will, there is a way

We work together

Blade-runner (N. B. Christensen)

Other multiplexing TAS (not represented)

Broholm, Lee et al.

The SPINS spectrometer at NIST

RIAS

MACS, NIST, Broholm

- 40x40cm2
 ⇒ 5°x12° asymmetric mono
- 21x2°x8° double analysers
- ¼ angular coverage

Multi-analyser-detector systems

- $-47 \times 0.33^{\circ}$ detectors $E_f = 30 \text{ meV}$
- Entire dispersion of 0.5cm³ LiNiPO₄
 in 4h @ IN8+MAD
 20 scans ⇒ ~1000 (Q,E,Amp) Points

– PSI crew, F. Demmel, M. Jimenez-Ruiz et al.

CAMErA

Continuous Angle Multiple Energy (readout) Analysis

CAMEA: no greek myth Google \Rightarrow Typo or... A Seattle DJ !

30

2

Qx [1/AA]

30

2

3

2