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The structure of, and anisotropic thermal motions in, the red

semiconductor tetrahedral layer structure of HgI2 have been

studied with neutron powder diffraction as a function of

temperature from 10 to 293 K. Average thermal displacement

parameters Ueq of the two atoms are comparable in size at

10 K, but Ueq(Hg) increases considerably faster with tempera-

ture than Ueq(I), the Hg—I bond being highly non-rigid. The

anisotropic displacement tensor U(I) is strongly anisotropic

with one term about twice as large as the others, while U(Hg)

is nearly isotropic. All displacement tensor elements, except

U22(I), increase faster with temperature than harmonic

quantum oscillator curves indicating a softening of the

isolated-atom potentials at large amplitudes. A lattice

dynamical model provides arguments that the anisotropic

thermal motions of I are dominated by a soft mode with a

wavevector at the [1
2

1
2 0] boundary of the Brillouin zone

consisting essentially of coupled librations of the HgI4

tetrahedra, and by translations of the entire layer. The large

vibration amplitudes of Hg suggest weak Hg–I force constants

compared with the I–I force constants, allowing Hg to move

quite freely inside the tetrahedra. The libration mode induces

dynamic deformations of the Hg—I bond with twice its

frequency. This provides a mechanism for the anharmonicity

and may explain the lightening of the color from red to orange

upon cooling at ca 80 K.
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1. Introduction

Mercuric iodide, HgI2, forms many different structures

depending on temperature and pressure. At ambient condi-

tions, it also shows several metastable structures co-existing

with the stable red form, phase III (Jeffrey & Vlasse, 1967).

Several of these structures have been determined in detail

(Hostettler et al., 2001). The latest version of the phase

diagram has been published by Hostettler & Schwarzenbach

(2005). The red phase III adopts a tetrahedral semiconductor

structure (Jeffrey & Vlasse, 1967; Hostettler & Schwarzen-

bach, 2005), where the I atoms form a cubic closest packing

and the Hg atoms occupy layers of corner-linked tetrahedral

voids with all Hg—I—Hg and I—Hg—I angles close to

tetrahedral (Fig. 1). This form is of technological interest

because of its opto-electronic properties (Bube, 1957). It is

currently used in �- and X-ray detectors (Gospodinov et al.,

2005). At ambient pressure, this structure is stable from the

lowest temperatures to ca 400 K, at which temperature a first-

order phase transition to a yellow phase II occurs, exhibiting

HgI2 molecules (Hostettler et al., 2003). Differential thermal

analysis data (Tonkov & Tikhomirova, 1971) indicate the

existence of a phase transition at moderate temperatures and

pressures of phase III into phase IV, whose structure is iden-



tical to that of phase III. The III–IV transformation is not

associated with a change of the volume of the unit cell.

However, it shows a change of ‘tetragonality’, with � = c/a �

81/2 changing sign from positive to negative. At � = 0, the

metric of the iodine sublattice is cubic with |a1 � a2| = 21/2a =

c/2. The III–IV phase boundary has been associated with an

anti-isostructural transition, and has been tentatively extra-

polated to ambient pressure and ca 80 K (Hostettler &

Schwarzenbach, 2005), where � ’ 0. The red color fades with

decreasing temperature. The compound is orange at 80 K.

The thermal displacement parameters of the red phase III

have the peculiar property that they are larger for Hg than for

I, at least in the isotropic approximation, in spite of Hg being

much heavier than I. The study of the anisotropic displace-

ment parameters as functions of temperature may yield an

explanation of this observation and give further insight into

the elusive anti-isostructural transition III–IV. Precise X-ray

studies of HgI2 are hampered by the following obstacles:

(1) Absorption is strong even for short-wavelength radia-

tion and absorption corrections require precise measurements

of crystal shapes and diffraction geometries.

(2) The use of graphite-monochromated radiation in single-

crystal studies always results in scan-truncation errors

(Rousseau et al., 2000; Lenstra et al., 2001), in particular for

the high-order reflections which are indispensible for a precise

determination of displacement parameters.

(3) HgI2 crystals lose substance by sublimation at room

temperature and in open gas-flow refrigerators. Therefore, for

time-consuming diffraction studies crystals have to be

protected.

In contrast, neutron powder diffraction offers advantages in

the determination of thermal motion parameters. Absorption

effects in HgI2 are small. The wavelength dispersion in a

monochromated neutron beam is much better defined than in

a graphite-monochromated X-ray beam; it is well known that

displacement parameters measured with neutrons are in

general more trustworthy, while those from graphite-mono-

chromated X-rays are most often too large (Lenstra et al.,

2001). The sample can be enclosed in a solid container that is

transparent to neutrons. For a simple structure such as HgI2,

powder diffraction can yield anisotropic displacement para-

meters and it is an excellent method for calibrating results

obtained by X-ray diffraction.

In this work, we present anisotropic thermal displacement

parameters in HgI2 as functions of temperature from 10 K to

room temperature determined from powder neutron diffrac-

tion, as well as results obtained at room temperature from

single-crystal X-ray diffraction. Preliminary results have been

published in Hostettler et al. (2001). We now propose a lattice

dynamical model explaining the anisotropy of the displace-

ment tensor of I, and a mechanism for the anharmonicity.

2. Experimental

For neutron diffraction, commercial red HgI2 powder (Fluka

83379) was enclosed under He gas atmosphere in a cylindrical

V container of 8 mm diameter and height 52 mm. The powder

diffraction measurements were performed on the high-reso-

lution multidetector powder diffractometer HRPT for thermal
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Figure 2
Observed (points), calculated (line) and difference (obs. � calc., dashed
line) neutron diffraction patterns of HgI2 at 200 K (anisotropic
displacement factors) and at 10 K (isotropic displacement factors),
respectively. Note at 200 K the pronounced decrease of the Bragg
intensities at high scattering angles as well as the presence of significant
diffuse intensity.

Figure 1
Structure of red HgI2 (program ATOMS; Dowty, 2006). The HgI4

tetrahedra are corner-linked into layers which are stacked along c. The
arrows are along a1 and a2 of the tetragonal unit cell and indicate the
dominant thermal vibration mode of I.



neutrons (Fischer et al., 2000), situated at the continuous

spallation neutron source SINQ (Fischer, 1997) of Paul

Scherrer Institute (PSI) at Villigen, Switzerland. A primary

Soller collimation of 12 min, secondary collimation of 24 min

and scattering angle step of 0.05� were used. The neutron

wavelength, � = 1.3717 (3) Å, calibrated with an Si standard

sample, was obtained from a wafer-type, vertically focusing Ge

monochromator. The sample was cooled by means of a closed-

cycle He refrigerator. Data were collected at 10, 30, 60, 100,

200 and 293 K.

The profile data were analysed with a recent version of the

FULLPROF program package, based on the internal neutron

scattering amplitues (Rodriguez-Carvajal, 1993). The data

were corrected for absorption; the product of the linear

absorption coefficient and the cylinder radius �r = 0.378 was

obtained from the measured neutron transmission. The

background was well described by 12 cosine Fourier para-

meters (Rodriguez-Carvajal, 1993). Anisotropic thermal

displacement parameters were refined for all temperatures

and compared with the corresponding isotropic refinements.

Refinements converged easily, and agreement between the

isotropic and anisotropic model parameters was excellent. In

particular, the equivalent isotropic displacement parameters

Ueq = (U11 + U22 + U33)/3 from the anisotropic tensors agreed

closely with the isotropic values. The isotropic

results therefore need not be reported here. In

total, 28 parameters (or 25 for the isotropic

refinements) were refined against approxi-

mately 230 Bragg reflections (hkl) contri-

buting to the measured neutron diffraction

patterns. Fig. 2 shows two characteristic

diffraction patterns. Obviously, the amplitudes

of atomic thermal motions are quite large

already at 200 K, as evidenced by the strong

decrease of Bragg intensities at higher scat-

tering angles. There are also significant diffuse

intensities visible in the neutron diffraction

patterns.

Single-crystal X-ray data were measured on

a Stoe image-plate diffractometer with Mo K�
radiation, � = 0.71073 Å. The crystal was

obtained by recrystallization from 2-chloro-

ethanol. The crystal shape was measured with a telescope and

used for absorption correction by numerical integration. Data

collection at 293 K consisted of 200 images taken with an

oscillation angle of 1� and an exposition time of 300 s per

image. The structure was refined anisotropically by standard

least-squares against the structure factors squared |F|2

(Hostettler, 2002).

3. Analysis of geometrical properties

Table 1 reports the lattice constants and the atomic coordinate

z of I as functions of temperature and the agreement values of

the refinements. Table 2 shows intra- and interlayer distances

and angles, and Table 3 shows the thermal displacement

parameters, i.e. the mean-square displacements (m.s.d.) in Å2.

Figs. 3 and 4 show the corresponding graphical representations

of these results. The structure is clearly the same in the whole

temperature range from 10 K to room temperature. The unit-

cell volume and the lattice constant c increase linearly above

100 K. In contrast, a expands less than c at low temperatures,
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Table 1
Lattice parameters a and c of red HgI2 as functions of the temperature T, refined from the
powder neutron intensities, and single-crystal X-ray data, with anisotropic displacement
parameters.

Tetragonal, space group P42/nmc (No. 137), origin at 1; Hg in position 2(a), 1/4 3/4 1/4, site
symmetry 4m2; I in position 4(d), 1/4 1/4 z, site symmetry 2mm. The agreement values Rwp, Rexp, �2

and RB concern weighted profile intensities, a statistically expected value, goodness-of-fit and
integrated intensities (Rodriguez-Carvajal, 1993). Standard uncertainties are given within
parentheses and correspond to the last relevant digit.

T (K) a (Å) c (Å) z(I) Rwp Rexp �2 RB

10 4.358 (1) 12.300 (3) 0.3915 (1) 0.041 0.025 2.8 0.034
30 4.358 (1) 12.306 (3) 0.3914 (2) 0.064 0.027 5.5 0.035
60 4.359 (1) 12.319 (3) 0.3912 (1) 0.035 0.023 2.5 0.039
100 4.360 (1) 12.337 (3) 0.3909 (2) 0.039 0.023 2.9 0.050
200 4.365 (1) 12.389 (3) 0.3904 (2) 0.037 0.023 2.7 0.072
293 4.370 (1) 12.437 (3) 0.3898 (6) 0.072 0.033 4.8 0.086
293 X 4.3675 (6) 12.470 (3) 0.3890 (2) – – 4.9 0.086

Table 2
Hg—I distances (Å), apical I—Hg—I angles (�), I—I interlayer contact
distances (Å), r.m.s. libration amplitudes (L33)1/2 of HgI4 tetrahedra
about c (�) as functions of the temperature T.

The equatorial I—Hg—I angles are obtained from cos(apical) + 2cos(equa-
torial) = �1. The apical angles are bisected by the c direction, the equatorial
angles are bisected by the a1 and a2 directions. The Hg—I—Hg angles are the
same as the apical I—Hg—I angles.

T d (Hg—I) � (I—Hg—I) d (I—I) (L33)1/2

10 2.789 (1) 102.77 (5) 4.077 (1) 1.3 (1)
30 2.789 (1) 102.76 (8) 4.079 (1) 1.6 (1)
60 2.788 (1) 102.81 (6) 4.085 (1) 1.8 (1)
100 2.788 (1) 102.89 (7) 4.088 (1) 2.3 (1)
200 2.791 (2) 102.90 (9) 4.111 (2) 3.7 (1)
293 2.792 (4) 103.0 (3) 4.131 (4) 4.6 (2)

Figure 3
Temperature dependence of lattice constants and unit-cell volume of red
HgI2. "(T) is the deformation [X(T) � X(T = 10 K)]/X(T = 10 K) with
X = a, c and V; �(T) = c(T)/a(T) � 81/2 is the tetragonality (� = 0 for a
metrically cubic iodine sublattice).



and the increase is not yet linear at 100 K. Thermal expansion

in the covalently bonded HgI2 layers is small over the whole

temperature range. The shape of the HgI4 tetrahedron hardly

changes and there is virtually no expansion of the Hg—I

distance (Table 2). The thermal expansion of the unit cell is

dominated by the expansion of the interlayer I—I contact

distance (Table 2), which is much larger than the expansion of

the intralayer I—I distance [the I—I distances corresponding

to the equatorial I—Hg—I angles expand from 4.649 (2) Å at

10 K to 4.66 (1) Å at 293 K]. The geometry of the structure

does not show evidence of the elusive III–IV phase transition.

The tetragonality depends linearly on temperature (correla-

tion coefficient 0.99978) and changes sign at 85 K.

4. Analysis of the thermal displacement parameters

4.1. Quasi-harmonic quantum oscillator curves

Fig. 4 shows the displacement parameters of Table 3 as

functions of temperature. At 10 K, the U values, i.e. the mean-

square displacements (m.s.d.), of Hg and I are close to the

zero-point motions, but they increase strongly with tempera-

ture. The thermal motion of Hg is nearly isotropic, whereas

that of I is highly anisotropic. U11(Hg) and U33(Hg) are

consistently, and at higher temperatures, considerably larger

than U22(I), U33(I) and U11(I) � U22(I), although the ratio of

the atomic masses M(Hg)/M(I) is ca 1.6. The r.m.s. displace-

ments along the Hg—I bonds are ubond = {U22sin2(�/2)

+ U33[1� sin2(�/2)]}1/2, where � is the I—Hg—I angle of Table

2. The difference ubond(Hg) � ubond(I) increases from 0.015 Å

at 10 K to 0.052 Å at 293 K, indicating the Hg—I bond to be

highly non-rigid. The curves in Fig. 4 also indicate the

displacements to be anharmonic. The temperature depen-

dence of harmonic thermal motions ought to obey a Debye

curve or a harmonic oscillator curve (Bürgi et al., 2000)

UðTÞ ¼ ½h- =ð2!mÞ� coth½h- !=ð2kBTÞ�; ð1Þ

where h- is Planck’s constant, ! the vibrational circular

frequency, m the mass of the oscillator and kB Boltzmann’s

constant. In the high-temperature limit, this curve approaches

a straight line passing through the origin

at T = 0. However, all observed Us, with

the exception of U22(I), increase faster

than harmonic oscillator curves. This

indicates anharmonic motions corre-

sponding to a softening at large displa-

cement amplitudes of the isolated-atom

potentials, compared with the parabolic

harmonic potentials. Anharmonic

effects can be taken into account in (1)

through a quasi-harmonic Grüneisen-

type temperature dependence of the

frequency ! (Bürgi et al., 2000)

!ðTÞ ¼ !0½1� �ðV � VminÞ=Vmin�; ð2Þ

where � is a Grüneisen constant, V is

the unit-cell volume and Vmin the cell

volume at the lowest temperature of measurement (10 K). The

thermal expansion of the unit cell is represented by (V �

Vmin)/Vmin = b1T + b2T2, where the coefficients have been

obtained by a fit to the data of Table 1. Fitting (1) and (2) to

the data of Table 3 gives: � = 5.4 (2.0), 6.9 (1.8), 0 (fixed), 8.7

(2.7), 7.6 (1.7) and !0/2�c = 31 (1), 32 (1), 50.2 (1), 54 (3), 49

(1) cm�1 for U11(Hg), U33(Hg), U22(I), U33(I), U11(I)� U22(I),

respectively; c is the speed of light, uncertainties are given in

parentheses, for the choice of

U11(I)�U22(I) see (4). The curves in Fig. 4 show the quality of

the fit to be worst at the lowest temperatures. The frequencies

are of the order of those reported by Prevot et al. (1978) and

Biellmann & Prevot (1980). Also refining � for U22(I) gives �
= 4.5 (6.0) and a frequency of 54 (5) cm�1, but no superior fit.

The refined anisotropic displacement parameters from X-

ray data are considerably larger than those from neutron data.

This may be explained by scan truncation errors in the X-ray

data which may be even larger than postulated in Lenstra et al.

(2001) owing to the automatic integration procedure of the
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Table 3
Thermal displacement tensors of red HgI2 as functions of the temperature T, refined from the
powder neutron intensities and single-crystal X-ray data.

For Hg, U11 = U22, U33, U12 = U13 = U23 = 0; for I, U11, U22, U33, U12 = U13 = U23 = 0. The temperature factor
expression is exp[�2�2(U11h2 + U22k2)/a2 + U33l2/c2], the equivalent isotropic expression is
exp[�8�2Ueq(sin �/�)2], Ueq = (U11 + U22 + U33)/3. Standard uncertainties are given within parentheses
and correspond to the last relevant digit.

T Ueq Hg Ueq I U11 Hg U33 Hg U11 I U22 I U33 I

10 0.0013 (2) 0.0011 (5) 0.0013 (2) 0.0011 (2) 0.0024 (5) 0.0001 (5) 0.0008 (5)
30 0.0035 (3) 0.0027 (8) 0.0036 (3) 0.0032 (5) 0.0048 (9) 0.0009 (9) 0.0025 (8)
60 0.0071 (2) 0.0057 (6) 0.0071 (2) 0.0071 (3) 0.0088 (6) 0.0040 (6) 0.0043 (5)
100 0.0122 (3) 0.0103 (8) 0.0124 (3) 0.0120 (5) 0.0157 (9) 0.0078 (8) 0.0074 (7)
200 0.0272 (5) 0.022 (1) 0.0276 (5) 0.0264 (7) 0.034 (1) 0.015 (1) 0.016 (1)
293 0.042 (2) 0.033 (5) 0.042 (2) 0.042 (3) 0.052 (5) 0.022 (4) 0.026 (5)
293 X 0.053 (3) 0.043 (3) 0.050 (2) 0.059 (3) 0.057 (2) 0.031 (2) 0.042 (3)
293 X � �U 0.042 (3) 0.033 (3) 0.040 (2) 0.049 (3) 0.047 (2) 0.021 (2) 0.032 (3)

Figure 4
Temperature dependence of the anisotropic displacement parameters in
HgI2. The quasi-harmonic quantum oscillator curves have been obtained
using equations (1) and (2) by adjusting a Grüneisen constant � and a
frequency !0 to the observations. For U22(I), the harmonic curve (� = 0) is
shown. U11(I) � U22(I) is reported, rather than U11(I), because it
represents the librational eigenmode, see equation (4).



image-plate data. By subtracting a correction factor, U(X-

ray,corr) = U(X-ray) � 0.01, a reasonable agreement with the

neutron data is achieved (Table 3). In particular, U11(I) �

U22(I), to be discussed below, agrees closely.

4.2. Phonon model

The thermal motion of I is dominated by the tensor element

U11, while U22 is small and increases only moderately with

temperature. The corresponding motions are, respectively,

perpendicular and parallel to the densest rows of I atoms, i.e.

the straight lines of corner-linked tetrahedral edges. More

than anything else, this suggests coupled librations of tetra-

hedra about the c axis normal to the HgI2 layers (Fig. 1),

adjacent tetrahedra librating in opposite senses. To support

this interpretation, we show in the following that this move-

ment is indeed a phonon mode with particularly low frequency

and thus high amplitude. Phonon dispersion curves for

wavevectors along the a axis [100] have been measured by

Prevot et al. (1978) and calculated theoretically by Sim et al.

(1994). The modes at the Brillouin zone center have been

studied with IR (Biellmann & Prevot, 1980) and Raman

(Karmakar et al., 2005) spectroscopies. However, the wave-

vector of the mode we are interested in belongs to the

boundary point M of the Brillouin zone and has the [110]

direction. We therefore present a simple two-dimensional

model for which phonon dispersion curves can easily be

calculated as functions of a set of force constants, representing

qualitatively some of the dispersion curves for an isolated

HgI2 layer. We then show that for the librational mode we are

interested in, the solution for this simple model closely

approximates a degenerate soft mode of the complete HgI2

crystal structure. We also attempt to explain the observation

that Ueq(Hg) > Ueq(I). Details of the force constant model and

types of eigenvectors have been deposited.1

4.2.1. Vibrations of a chessboard. The unit cell of an

isolated HgI2 layer contains three atoms, one Hg and two I.

Wavevectors are of the type q = 2�(q1a1* + q2a2*), |q| = 2�/�
(� direction). We assume the following four types of force-

constant tensors for nearest-neighbor interactions: Hg—I

from the center to the corners of a HgI4 tetrahedron, two types

of strong I—I interactions along the edges of a tetrahedron

parallel (apical) and inclined (equatorial) to the plane of the

layer, and a weak I—I interaction between different tetra-

hedra, which is of the same length as the apical tetrahedral

edge. This choice of interactions is very different from that of

Sim et al. (1994) who include Hg—Hg interactions, but do not

assign interactions along the four equatorial tetrahedral edges.

This omission corresponds to �1 = �2 = 0 in (3) below and gives

accidental degeneracies at point M. Following the method of

calculation of Willis & Pryor (1975), a 9 � 9 dynamical matrix

may be derived, some of whose elements are complex. The

corresponding phonon dispersion curves are in general not

easily obtained in a closed form and require numerical

calculations for each wavevector of interest. We therefore

devise a simpler model whose dispersion curves can be

calculated in a closed form and show the features of the

vibrations of a HgI2 layer of interest to us. We consider waves

in an isolated two-dimensional layer built only of iodine where

filled and empty tetrahedra are distinguished by the choice of

force constants. We also consider only atomic displacements

parallel to the plane of the layer. Vibrations of this model thus

do not comprise waves with polarization components along c,

nor movements of Hg against I. The corresponding dispersion

curves are thus only approximately those of a complete three-

dimensional layer, but they can be calculated explicitly. Since

the z coordinates of the atoms do not play any role, the

problem reduces to the calculation of the vibrations of the

projection of the layer onto its plane which is a chessboard,

with the black squares representing filled tetrahedra and the

white squares empty tetrahedra. There are two translationally

non-equivalent atoms per unit cell, resulting in four phonon

branches, two acoustical and two optical. When the origin of

the coordinate system is placed in the center of a black square,

the atom coordinates are 1
2, 0 and 0, 1

2 for atoms 1 and 2,

respectively. Each atom interacts with eight neighbors, four

along the edges of the squares a1� a2 (tensor a), two along the

diagonals of the black squares (tensor b), and two along the

diagonals of the white squares (tensor c). Symmetry restricts

each interaction to two force constants, one along the bond

(longitudinal length deformation, index 1) and one perpen-

dicular to the bond (transverse deformation, index 2). There

are thus six force constants: �1, �2, 	1, 	2, �1, �2. The � and 	
constants represent forces in a relatively rigid tetrahedron

occupied by Hg and are expected to be large, whereas �
represents the non-bonded interactions between different

filled tetrahedra and is expected to be small. It is a student’s

exercise (Willis & Pryor, 1975) to work out the 4 � 4 dyna-

mical matrix as a function of the wavevector components (q1,

q2). The librational mode proposed in Fig. 1 belongs to the

wavevector along a1 � a2, with components q1 = q2 = q

(specifically point M on the Brillouin zone boundary with q =
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Figure 5
Phonon dispersion curves of a chessboard representing a single layer in
HgI2, comprising only I atoms and in-plane atomic displacements. The
wavevector in the � direction is q = 2�q(a�1 + a�2). Eigenvectors at point
M, q = 1

2.

1 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: BK5060). Services for accessing these data are described
at the back of the journal.



1
2). For this direction, the types of eigenvector are easily

guessed to be either e1, �e2, e2, �e1 or e1, e2, e2, e1 (displace-

ment amplitudes along a1 and a2 of atoms 1 and 2). In both

cases, the dynamical matrix reduces to a 2 � 2 matrix, whose

eigenvalues are

ðm=2Þ!2
1;2 ¼ ð�1 þ �2Þ þ ð��1 þ �2 þ 	1 þ 	2

þ �1 þ �2Þ sin2 �q� X ð3aÞ

ðm=2Þ!2
3;4 ¼ ð�1 þ �2Þ þ ð�1 � �2 þ 	1 þ 	2

þ �1 þ �2Þ sin2 �q� X ð3bÞ

X ¼fð�1 þ �2Þ
2 cos4 �q

þ ð	1 � 	2 � �1 þ �2Þ
2 sin4 �qg1=2; ð3cÞ

where m is the mass of the atom. We now further simplify the

model by assuming that all I—I interactions of the filled

tetrahedra are equal and that atoms do not interact across the

white squares: �1 = 	1, �2 = 	2, �1 = �2 = 0. The rigidity of the

white squares depends only on the transverse deformation

force constant �2. The resulting phonon dispersion curves are

shown in Fig. 5 for �1/�2 = 20. The lowest transverse acoustical

mode, corresponding to the largest displacement amplitudes,

is of particular interest. At the border point M of the Brillouin

zone, q = 1
2, this curve shows a minimum with eigenvalue !2 =

8�2/m. The eigenvector is the displacement pattern of Fig. 1.

The qualitative form of the phonon curves is similar for �1/�2 =

10 and does not change much as long as �2 is kept reasonably

small. With increasing �2, the white squares become stiffer and

the minimum at q = 1
2 gradually disappears. For �1 ’ �2, the

dispersion curves approach those of an uncolored square tiling

(with no optical branches since the unit cell becomes smaller).

In contrast, for �2 = 0 the frequency at q = 1
2 is zero, and there

should be a phase transition driven by a soft mode. Such a

transition has not been observed. The vibration frequencies

inside the Brillouin zone are larger than at point M on the

border, because these modes lead to deformations of the

tetrahedra; the frequencies involve length deformation terms

and are thus higher. This is also the case for a more complete

model comprising Hg.

4.2.2. Vibrations of an isolated HgI2 layer. The more

complete model based on an isolated three-dimensional HgI2

layer with all first-neighbor I–I and Hg–I force-constant

tensors can be solved explicitly for q1 = q2 = 1
2 at point M of the

Brillouin zone. Most importantly, the complete layer possesses

a librational mode whose frequency depends on a weak

transverse force constant and interactions between different

tetrahedra (across voids), and is identical to the soft mode of

the chessboard model. Indeed, three modes of (3) and Fig. 5

also exist in the complete layer. Only the mode above the

lowest of Fig. 5 also contains a movement of Hg along +c (for

the arrows chosen in the figure). The frequencies of the other

five modes (four of which are pairwise degenerate) all depend

on longitudinal force constants and are thus large compared

with the soft mode. Two of them mainly involve the I atoms,

the other three mainly Hg. The frequencies of the former are

dominated by longitudinal I–I force constants, those of the

latter by the Hg–I force constants. The eigenvectors of the

latter are close to displacements of Hg along a1, a2 and c, i.e.

perpendicular to the edges of the tetrahedra. If the Hg–I force

constants were smaller than the I–I force constants, modes

dominated by the former would have low frequencies and the

corresponding larger amplitudes would give an explanation of

the surprisingly large displacement factors U(Hg).

4.2.3. Vibrations of the complete HgI2 structure. Finally,

we discuss the soft libration mode of the complete HgI2

structure. The full 18 � 18 dynamical matrix for wavevectors

(q1, q2, 0) assuming nearest-neighbor interactions has been

deposited. One type of Hg–I interaction and four types of I–I

interactions (apical and equatorial HgI4 edges, I–I contacts in

and between layers) are defined by 23 symmetry-independent

force constants. For q1 = q2 = 1
2 at point M, eight types of

eigenvectors are obtained for the 18 modes, corresponding to

two 3 � 3 and six 2 � 2 matrices to be diagonalized. It turns

out that in a layer pair, the librational mode in one layer is

coupled with the mode above the lowest of Fig. 5 in the other

layer, as shown in Fig. 6. The instantaneously deformed layers

possess the same symmetry (p421m with respect to the trans-

lations a1 � a2): the librations deform the empty tetrahedra

while in the adjacent layer the occupied tetrahedra are

deformed. These deformations are coupled via the anisotropic

component (term �12 = �21) relative to the layer plane of the

interlayer force constant tensor �. Without this anisotropic

component (s12 = 0), a layer could execute librational move-

ments while the adjacent layer remained static. The frequency

of the librations depends not only on the force constants of an
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Figure 6
Qualitative instantaneous view of a pair of HgI2 layers deformed by the
low-frequency mode of librating tetrahedra (program ATOMS; Dowty,
2006). If in one layer the tetrahedra librate, they are deformed in the
adjacent layer. Alternatively, the mode may be represented by librations
of (slightly) deformed tetrahedra. The displacements in different layers
are then not coupled, while the frequency depends on the interlayer force
constants.



isolated layer, but also on the components �11 and �22 of the

tensor s which express the friction between layers. Evidently,

there are two degenerate modes of this type, since all layers

are symmetrically equivalent. The librational movement is

expected to be considerably larger than the deformation of the

HgI4 tetrahedra since the latter requires much higher energy

(Fig. 5) and contributes to U22(I), which is the smallest of the

observed displacement tensor components.

We conclude that our interpretation of the experimental

results in terms of an important librational motion of the HgI4

tetrahedra (Fig. 1) is well supported by the phonon model. The

simple chessboard model shows the salient features and gives

similar results at point M as a corresponding three-dimen-

sional model. The thermal vibrations of a layer may be lumped

into two contributions: the coupled librations of the tetrahedra

creating the displacement pattern of Fig. 1 with wavevector

q = �(a�1 + a�2) and translations of rigid layers close to q = 0.

Optical modes at q = 0 are pairwise degenerate (Prevot et al.,

1978; Biellmann & Prevot, 1980) and are expected to contri-

bute equally to U11(I) and U22(I); they cannot explain the

observed U11(I) >> U22(I). In addition, the large displacement

parameters of Hg seem to indicate that the Hg–I force

constants may be considerably smaller than the I–I force

constants.

4.3. Mechanism of anharmonic motions

In this section we demonstrate that the libration mode

generates additional anharmonic effects. The thermal motions

of rigid molecules are described by TLS theory (Schomaker &

Trueblood, 1968). For an isolated rigid tetrahedron with the

symmetry 4m2, the independent terms are L11 = L22, L33

(libration tensor); T11 = T22, T33 (translation tensor); S12 = S21

(correlation tensor); all other terms being 0 (4 plus mm2 in

Willis & Pryor, 1975). L11 and S12 contribute to U23(I). This

shows that the corner-linked I-tetrahedra in HgI2 cannot move

as rigid bodies: the space-group symmetry imposes U23(I) = 0

and therefore L11 = S12 = 0. In other words, the I atoms cannot

move on curved trajectories as would be the case for a

librating free molecule. The mean-square libration amplitude

L33 is easily calculated as (Willis & Pryor, 1975; Schomaker &

Trueblood, 1968)

L33 ¼ 4a�2�U½rad2
�; ð4Þ

with �U = [U11(I) � U22(I)], while the translation terms are

T11 = T22 = U22(I) and T33 = U33(I). Table 2 shows the r.m.s.

libration amplitudes (L33)1/2 in degrees.

During the libration described by L33, the tetahedron

undergoes an anharmonic deformation of bond lengths whose

frequency is twice the harmonic libration frequency: the

deformation due to U11(I) is the same for instantaneous

displacements of I along +a1 and along �a1. This distortion of

the tetrahedron may be estimated as follows. Suppose that the

I atom at the equilibrium position 1
4 ;

1
4 ; z0(I), which belongs to

the tetrahedron of the Hg atom at 1
4 ;

3
4 ;

1
4, is instantaneously

displaced by 
a (Å) along the +a1 cell axis, and by "c (Å) along

the +c axis. The instantaneous Hg–I bond length becomes

d ¼ ½d2
0 þ a2
2 þ 2�c2ðz0 �

1
4Þ þ c2�2�

1=2

’ d0 þ ða
Þ
2=2d0 þ ½�c

2
ðz0 �

1
4Þ�=d0; ð5Þ

where d0 is the equilibrium distance. Analogous equations

exist for the I–I contacts. The harmonic in-plane (
) and out-

of-plane (") movements are uncorrelated. However, the

second-order term 
2 is correlated with " through the third-

order anharmonic Gram–Charlier term U113, which is allowed

by the point-group symmetry mm2 of I. Since our experi-

mental data gave no information on the third-order anhar-

monicity of I, we consider different assumptions:

(i) The Hg—I distance does not change during the vibra-

tion, i.e. d = d0 at all times. Since the average value <a2
2> =

�U, the average value of " becomes <"> =��U/[2c2(z0 �
1
4)].

The observed z coordinate is z(I) = z0 + <"> and the libration-

corrected equilibrium Hg—I distance is d0 ’ dobs + �U/2dobs.

This correction never exceeds 2 s.u. The tetrahedron vibrates

with deformations of the I—Hg—I angles, i.e. deformations of

the I–I contacts. The assumption of a rigid bond length is,

however, not very convincing in view of the large thermal

displacements of Hg. An alternative assumption is:

(ii) " = 0 at all displacements 
, i.e. the libration is not

coupled with an out-of-plane movement of I. We may assume

that the probability of finding a displacement a
 is given by a

Gaussian distribution G(a
) with variance �U, G(a
) =

(2��U)�1/2exp[�(a
)2/2�U]. The average distance is easily

calculated by integrating dG(a
) from 
 =�1 to1: hdi= d0 +

�U/2d0. In opposition to model (i), this is not a libration

correction, but a dynamic average. The equilibrium position of

I at 
 = 0 is not affected by the libration. The probability

density function (p.d.f.) of d is obtained by substituting a
 =

2d0(d � d0) into the Gaussian p.d.f. G(a
). By integrating the

result from d0 to d, the cumulative distribution function C(d) is

obtained, which gives the probability for finding a bond length

smaller than d

CðdÞ ¼ erf ½a
ð2�UÞ�1=2
� ¼ erf ½ðd0ðd� d0Þ=�UÞ1=2

�;

erf ðxÞ ¼ 2ð�Þ�1=2

Zx

0

expð�t2Þdt: ð6Þ

100(1 � C) gives the percentage of bonds longer than d. At

293 K, 2.3% of the bonds are extended by more than 0.01d0 =

0.028 Å = 6 s.u. of d0 (Table 2). At 200 K, 4.6% of the bonds

are lengthened by more than 0.005d0 = 9 s.u. At 100 K, the

values are 4.7% for 0.002d0 = 5 s.u. and at 60 K 1.1% for

0.002d0 = 6 s.u. These values may not seem to be impressive,

but the proposed bond extensions are statistically significant

and the percentages of longer bonds are not negligible. On the

level of 2 s.u., the percentage of longer bonds is 16% at 100 K,

and increases to 37% at 200 and 293 K. The model is easily

generalized to produce longer dynamical bond extensions: the

I atoms may be allowed to move along +c in the opposite

direction of model (i), i.e. " = k
 positive and proportional to

the displacement 
. Since " contributes linearly to the distance,

research papers

834 Dieter Schwarzenbach et al. � Structure and thermal motions of red HgI2 Acta Cryst. (2007). B63, 828–835



k values as small as 0.05 or 0.1 have a considerable effect on

the bond lengthening.

Assumption (ii) suggests an explanation of the large

movements of Hg and the proposed small Hg–I force

constants. The dynamic lengthening of the Hg—I bonds

permits Hg to vibrate with larger amplitudes than the close-

packed I atoms, and the single-atom potential is indeed

expected in this model to soften with the lengthening of the

bonds. It is known that the color of HgI2 fades with decreasing

temperatures, being orange at 80 K. This suggests that the red

color is associated with the lengthened Hg—I bonds and

disappears when bond lengths remain close to d0. The color

change has been taken as indicative of a phase transition at

low temperatures. However, our present explanation does not

require the occurrence of a phase transition, for which we find

no evidence in the present work.

5. Conclusions

The dominant features of the thermal mean-square displace-

ments in HgI2 as functions of temperature are:

(i) the U(I) tensor is very anisotropic with U11(I) large,

(ii) the isotropic average Ueq(Hg) > Ueq(I), and

(iii) the thermal motions of both atoms, except U22(I), are

clearly anharmonic and indicate a softening of the isolated-

atom potential at large amplitudes.

Observation (i) is explained by a low-frequency soft phonon

mode at the surface point M of the Brillouin zone, wavevector

q = �(a�1 + a�2) involving cooperative librations of the HgI4

tetrahedra; (ii) suggests relatively small force constants of the

Hg—I bond and, correspondingly, modes allowing Hg to move

quite freely inside the tetrahedra without being much affected

by longitudinal I–I force constants. We propose for (iii) a

mechanism where the librations of the HgI4 tetrahedra impose

a dynamic vibration of all the bonds, and in particular of the

Hg—I bond: the bond lengthens with respect to the equili-

brium length d0 in phase with, but with twice the frequency of

the libration, with d0 not being an average but the shortest

bond length. The isolated atom potential of Hg thereby

becomes anharmonic and admits r.m.s. vibration amplitudes of

Hg which are considerably larger than those of I, and increase

faster with temperature. This model also suggests a qualitative

explanation for the lightening of the color of HgI2 from red to

orange at ca 80 K. However, there is no evidence for the III–

IV phase transition. It is not known whether the color change

has a well defined onset and might thus indicate a phase

boundary.

While more accurate measurements of the thermal displa-

cements in HgI2 by single-crystal synchrotron X-ray and

neutron diffraction would be welcome, a confirmation of our

model requires a determination of the phonon dispersion

curves in the � direction, and particularly at point M, by

inelastic neutron scattering. The force constant model adopted

by Sim et al. (1994) disregards I–I interactions of four of the six

HgI4 tetrahedral edges and is insufficient for a calculation of

these curves.
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