

Journal of Alloys and Compounds 302 (2000) L12-L16

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Letter

Synthesis and crystal structures of Cs₂MgD₄ and Cs₃MgD₅

B. Bertheville^a, P. Fischer^b, K. Yvon^{a,*}

^aLaboratoire de Cristallographie, Université de Genève, 24, Quai E. Ansermet, CH-1211 Genève 4, Switzerland ^bLaboratory for Neutron Scattering, ETH Zurich and Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

Received 16 December 1999; accepted 3 January 2000

Abstract

The title compounds were prepared by sintering stoichiometric mixtures of the binary deuterides in an autoclave under 65 bar pressure at 625 K. Neutron powder diffraction reveals a β -K₂SO₄ type structure for Cs₂MgD₄ (space group *Pnma*, a=8.5988(4), b=6.6234(3), c=11.5988(5) Å) and a Cs₃CoCl₅ type structure for Cs₃MgD₅ (space group *I*4/*mcm*, a=8.4022(2), c=12.6951(4) Å). In both deuterides magnesium is tetrahedrally coordinated by deuterium. The Mg–D bond distances (1.82–1.88 Å in Cs₂MgD₄ and 1.84 Å in Cs₃MgD₅) are longer by 0.02 Å, on the average, than those in the corresponding rubidium analogues. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Caesium magnesium deuterides; Saline hydrides; Neutron powder diffraction; Crystal structure

1. Introduction

Magnesium is a useful constituent for hydrogen storage materials [1,2]. In combination with alkali metals such as rubidium it forms a series of saline metal hydrides such as RbMgH₃ [3], Rb₂MgH₄ [4], Rb₃MgH₅ [4] and Rb₄Mg₃H₁₀ [5]. Caesium analogues such as Cs₂MgH₄ [6] and Cs₃MgH₅ [7] are known, but their detailed crystal structures have not yet been investigated. In this work a neutron powder diffraction analysis of the deuterides Cs₂MgD₄ and Cs₃MgD₅ is presented. It will be shown that the former crystallises with the β -K₂SO₄ type structure as was correctly assumed [6], whereas the latter adopts the Cs₃CoCl₅ type structure rather than the Sr₃SiO₅ type structure proposed previously [7].

2. Experimental

*Corresponding author.

2.1. Synthesis

Stoichiometric mixtures of the binary deuterides CsD and α -MgD₂ were pressed to pellets and sintered in an autoclave at 625 K under a deuterium pressure of 65 bar

E-mail address: klaus.yvon@cryst.unige.ch (K. Yvon)

for 5 days. The reaction products obtained were of white colour. They were pyrophoric and extremely sensitive to air and moisture. The binary deuterides were prepared by deuteration of metallic caesium (STREM 99.9%) and magnesium powder (CERAC 99.6, -400 mesh).

2.2. X-ray diffraction

The Cs_2MgD_4 and Cs_3MgD_5 samples were characterized by X-ray powder diffraction (Philips PW820 powder diffractometer, Cu K α radiation, sealed sample holder). The patterns suggested that the former contained a majority phase with orthorhombic β -K₂SO₄ type structure, and the latter a phase with body-centred tetragonal Cs₃CoCl₅ type structure. Attempts to obtain single phase samples by modifying the synthesis conditions failed. The Cs_2MgD_4 sample always contained significant amounts of Cs₃MgD₅ and unreacted binary deuterides as secondary phases, whereas the Cs₃MgD₅ sample contained unreacted CsD. Both samples also contained MgO inpurities. The refined cell parameters are listed in Table 1 together with those reported for the corresponding hydrides. The refined metal atom positions (not given here) were in agreement with those found in the corresponding Rb analogues [4].

2.3. Neutron diffraction

Data at room temperature were collected on the high-

Table 1 Cell parameters of ternary caesium magnesium hydrides and deuterides

Compound	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	$V(\text{\AA}^3)$	Reference
Cs ₂ MgH ₄	$8.627(2)^{a}$	6.654(2)	11.662(3)	669.4	[6]
Cs ₂ MgD ₄	8.5988(4)	6.6234(3)	11.5988(5)	660.59(5)	Present work
Cs ₃ MgH ₅	8.424(2)	_	12.728(3)	903.2	[7]
Cs ₃ MgD ₅	8.4022(2)	_	12.6951(4)	896.25(5)	Present work

^a e.s.d. values in parentheses.

resolution powder diffractometer HRPT [8] at the Swiss spallation neutron source SINQ at PSI in Villigen ($\lambda =$ 1.886 Å, $2\theta_{max} = 158.95^{\circ}$, step size = 0.05° in 2θ , T = 293K). The samples Cs₂MgD₄ (1.6 g) and Cs₃MgD₅ (2.1 g) were enclosed in cylindrical vanadium containers of 8 and 9 mm inner diameter, respectively. Rietveld refinements (program FULLPROF [9]) were performed by taking as starting parameters the X-ray metal position values, and by letting the deuterium positions vary about those of the rubidium analogues. For the Cs₂MgD₄ sample five additional phases were included in the refinement (Cs₃MgD₅,

Fig. 1. Observed (top), difference (middle), and calculated (bottom) neutron diffraction patterns of the Cs_2MgD_4 sample (T=293 K, $\lambda=1.886$ Å).

Fig. 2. Observed (top), difference (middle) and calculated (bottom) neutron diffraction patterns of the Cs_3MgD_5 sample (T=293 K, $\lambda=1.886$ Å).

Table 2						
Refinement results ^a	on	neutron	diffraction	data	for	Cs_2MgD_4

Site	x/a	y/b	z/c	$B_{\rm iso}({\rm \AA}^2)$
4c	0.1594(6)	1/4	0.4109(6)	2.9(1)
4c	0.4856(6)	1/4	0.6973(4)	1.6(1)
4c	0.2314(6)	1/4	0.0781(6)	1.8(1)
8d	0.3133(5)	0.0209(7)	0.1516(3)	4.7(1)
4c	0.0206(7)	1/4	0.0944(6)	5.6(2)
4c	0.8070(9)	1/4	0.5686(6)	4.3(2)
	Site 4c 4c 4c 8d 4c 4c 4c	Site x/a 4c 0.1594(6) 4c 0.4856(6) 4c 0.2314(6) 8d 0.3133(5) 4c 0.0206(7) 4c 0.8070(9)	Site x/a y/b $4c$ $0.1594(6)$ $1/4$ $4c$ $0.4856(6)$ $1/4$ $4c$ $0.2314(6)$ $1/4$ $8d$ $0.3133(5)$ $0.0209(7)$ $4c$ $0.0206(7)$ $1/4$ $4c$ $0.8070(9)$ $1/4$	Site x/a y/b z/c 4c0.1594(6)1/40.4109(6)4c0.4856(6)1/40.6973(4)4c0.2314(6)1/40.0781(6)8d0.3133(5)0.0209(7)0.1516(3)4c0.0206(7)1/40.0944(6)4c0.8070(9)1/40.5686(6)

^a T = 293 K, space group *Pnma* (no. 62), Z = 4; e.s.d. values in parentheses. $R_{\text{Bragg}} = 7.5\%$, $R_{\text{F}} = 5.3\%$, $R_{\text{p}} = 1.9\%$, $R_{\text{wp}} = 2.5\%$, S = 2.7.

Table 3 Refinement results $^{\rm a}$ on neutron diffraction data for $\rm Cs_3MgD_5$

Atom	Site	x/a	y/b	z/c	$B_{\rm iso}$ (Å ²)
Cs1	8h	0.6828(2)	0.1828(2)	0	2.4(5)
Cs2	4a	0	0	1/4	3.1(8)
Mg	4b	0	1/2	1/4	2.2(7)
DI	16 <i>l</i>	0.1240(1)	0.6240(1)	0.1625(1)	5.0(5)
D2	4c	0	0	0	3.5(7)

^a T = 293 K, space group *I*4/*mcm* (no. 140), Z = 4; e.s.d. values in parentheses. $R_{\text{Bragg}} = 6.6\%$, $R_{\text{F}} = 5.7\%$, $R_{\text{p}} = 2.7\%$, $R_{\text{wp}} = 3.4\%$, S = 2.4.

Table 4

Selected interatomic distances (Å) and angles (°) in Cs₂MgD₄

Cs1–D2	$3.106(8)^{a}$	D1–Mg	1.877(6)
2D1	3.327(7)	D3	2.972(7)
2D3	3.333(1)	D2	3.013(7)
2D1	3.418(7)	D1	3.035(7)
D3	3.540(9)	Cs2	3.046(6)
2D1	3.619(7)	Cs2	3.179(6)
Mg	3.682(7)	Cs1	3.327(7)
D2	3.859(9)	Cs1	3.418(7)
		D1	3.588(7)
		Cs1	3.619(7)
Cs2-2D1	3.046(6)	D2-Mg1	1.823(8)
D3	3.120(9)	2D1	3.013(7)
D3	3.141(9)	D3	3.105(9)
2D1	3.179(6)	Cs1	3.106(8)
D2	3.397(9)	Cs2	3.397(9)
2D2	3.520(3)	2Cs2	3.520(3)
Mg	3.830(8)	2D1	3.762(7)
		Cs1	3.859(9)
Mg-D3	1.822(9)	D3-Mg1	1.822(9)
D2	1.823(8)	2D1	2.972(7)
2D1	1.877(6)	D2	3.105(9)
D3-Mg-D2	116.9(5)	Cs2	3.120(9)
D3-Mg-D1	106.9(3)	Cs2	3.141(9)
		2Cs1	3.333(1)
		Cs1	3.540(9)

^a e.s.d. values in parentheses.

Table 5 Selected interatomic distances (Å) and angles (°) in Cs_3MgD_5

Cs1-2D2	$3.076(2)^{a}$	D1–Mg	1.845(1)
2D1	3.086(2)	D1	2.948(1)
4D1	3.339(2)	2D1	3.046(2)
2Mg	3.846(1)	Cs1	3.086(2)
		2Cs1	3.339(2)
		2Cs2	3.507(1)
Cs2-2D2	3.174(1)	D2-4Cs1	3.076(2)
8D1	3.507(1)	2Cs2	3.174(1)
4Mg	4.201(1)	8D1	3.914(1)
Mg-4D1	1.845(1)		
4Cs1	3.846(1)		
D1-Mg1-D1	106.01(7)		
D1-Mg1-D1	111.23(5)		

^a e.s.d. values in parentheses.

CsD, α -MgD₂ [10], MgO and V) and for the Cs₃MgD₅ sample two (CsD and MgO). For the former 47 parameters were allowed to vary: one zero correction, six background, six scale factors, 12 profile parameters (four for the Cs_2MgD_4 phase and eight for the five secondary phases), three lattice parameters, 13 positional parameters, and six isotropic temperature factors. For the latter 28 parameters were allowed to vary: one for the zero correction, six for the background, 15 for the Cs₃MgD₅ phase (one scale factor, two cell, eight atomic, and four peakshape parameters) and six for the secondary phases (four for CsD and two for MgO). The observed, calculated and difference neutron powder patterns are shown in Figs. 1 and 2. The refinement results are summarised in Tables 2 and 3, and selected interatomic distances are listed in Tables 4 and 5. The coordination polyhedra around the various atom sites are represented in Figs. 3 and 4.

3. Results and discussion

 Cs_2MgD_4 and Cs_3MgD_5 are salt-like compounds. They are isostructural with their rubidium analogues [4] and the corresponding deuterides based on zinc [11,12]. Both compounds contain tetrahedral MgD_4^{2-} anions, and Cs_3MgD_5 also contains an additional deuteride species D⁻ bonded to Cs only. Due to matrix effects the Mg-D bond distances in Cs_2MgD_4 (1.82–1.88 Å) and Cs_3MgD_5 (1.84 Å) are longer by 0.02 Å, on the average, than the corresponding distances in the rubidium analogues Rb_2MgD_4 (1.79–1.87 Å [4]) and Rb_3MgD_5 (1.82 Å [4]). As expected, they are shorter than those for octahedral coordinated Mg in binary α -MgD₂ (1.94 Å [10]). The bond (Cs_2MgD_4) : 107-117°; D-Mg-D angles $Cs_3MgD_5:106-111^\circ$) deviate only little from the tetrahedral angle. Caesium has nine-fold (Cs2) and 11-fold (Cs1) deuterium coordinations in Cs_2MgD_4 (Fig. 3), and eight-fold (Cs1) and ten-fold (Cs2) deuterium coordinations in Cs₃MgD₅ (Fig. 4). The Cs-D bond distances (Cs₂MgD₄: 3.11–3.86 Å (Cs1), 3.05–3.52 Å (Cs2); Cs_3MgD_5 : 3.08–3.34 Å (Cs1), 3.17–3.51 Å (Cs2)) are longer by 0.2 Å, on the average, than those in the rubidium analogues (Rb₂MgD₄: 2.77-3.97 Å (Rb1), 2.86-3.48 Å (Rb2); Rb₃MgD₅: 2.87–3.22 Å (Rb1), 3.06–3.34 Å (Rb2). All deuterium sites have six-fold metal coordinations. They are surrounded by five Cs and one Mg atoms except for D2 in Rb₃MgD₅ which is surrounded by six Cs atoms. The calculated hydrogen storage efficiencies are 1.37 wt% (40.01 g $H_2 1^{-1}$) for Cs_2MgH_4 and 1.18 wt% $(37.06 \text{ g H}_2 \text{ l}^{-1})$ for Cs₃MgH₅. No fluoride analogues are known. The only compound known in the Cs-Mg-F system is $Cs_4Mg_3F_{10}$ [13].

As to the potassium analogues only K_2MgH_4 is known to exist [14]. It crystallizes with the K_2NiF_4 structure type

Fig. 3. Metal and deuterium co-ordinations in Cs_2MgD_4 ; D sites numbered; site symmetries m (Cs1, Cs2, Mg, D2, D3) and 1 (D1).

rather than the β -K₂SO₄ structure type which means that hydrogen in that compound surrounds magnesium in an octahedral rather than a tetrahedral configuration. Attempts to synthesise a hypothetic hydride 'K₃MgH₅' containing tetrahedral MgH₄²⁻ anions have sofar failed. On the other hand, the corresponding zincates all exist (for M₂ZnD₄ and M₃ZnD₅, M=K, Rb, Cs; see Refs. [11,12,15,16]). Since zinc has a smaller atomic radius than magnesium in these type of compounds, the size ratio between the tetrahedral hydride anions and the metal cations M may be a critical parameter for structural stability. Further experiments are necessary to confirm this hypothesis.

Acknowledgements

The authors thanks J.-L. Lorenzoni for technical assistance. This work was supported by the Swiss Federal Office of Energy and the Swiss National Science Foundation.

Fig. 4. Metal and deuterium co-ordinations in Cs₃MgD₅; D sites numbered; site symmetries m.2m (Cs1), 422 (Cs2), -42m (Mg), m (D1) and 4/m (D2).

References

- [1] R.B. Schwarz, MRS Bull. 24 (1999) 40.
- [2] K. Yvon, Proceedings of the International Symposium on Metal– Hydrogen Systems: Fundamentals and Applications, Les Diablerets, Switzerland, August 25–30, 1996, J. Alloys Comp. 253–254 (1997) 1.
- [3] F. Gingl, T. Vogt, E. Akiba, K. Yvon, J. Alloys Comp. 282 (1999) 125.
- [4] M. Bortz, A. Hewat, K. Yvon, J. Alloys Comp. 268 (1998) 173, and references therein; Corrigendum: J. Alloys Comp. 288 (1999) 326.
- [5] F. Gingl, T. Vogt, E. Akiba, K. Yvon, J. Alloys Comp. 284 (1999) L4, and references therein.
- [6] H.H. Park, M. Pezat, B. Darriet, P. Hagenmuller, Chem. Scripta 28 (1988) 447.
- [7] H.H. Park, M. Pezat, B. Darriet, CR Acad. Sci. (Paris) 307 (2) (1988) 555.

- [8] P. Fischer, G. Frey, M. Koch, M. Koennecke, V. Pomjakushin, J. Schefer, R. Thut, N. Schlumpf, R. Buerge, U. Greuter, S. Bondt, E. Berruyer, Proc. of the ECNS '99. Physica B (2000) in press.
- [9] J. Rodriguez-Carvajal, in: Cong. Int. Union of Crystallography, Toulouse, Satellite Meeting on Powder Diffraction, 1990, p. 127.
- [10] M. Bortz, B. Bertheville, G. Böttger, K. Yvon, J. Alloys Comp. 287 (1999) L4.
- [11] M. Bortz, A. Hewat, K. Yvon, J. Alloys Comp. 248 (1997) L1.
- [12] M. Bortz, A. Hewat, K. Yvon, J. Alloys Comp. 253–254 (1997) 13.[13] R.E. Schmidt, J. Pebler, D. Babel, Eur. J. Solid State Inorg. Chem.
- 29 (1992) 679.
- [14] H.H. Park, M. Pezat, B. Darriet, P.R. Hagenmuller, Chim. Minér. 24 (1987) 525.
- [15] M. Bortz, K. Yvon, P. Fischer, J. Alloys Comp. 216 (1994) 39.
- [16] M. Bortz, K. Yvon, P. Fischer, J. Alloys Comp. 216 (1994) 43.