hs_sch 'lt5'; # we choose the sample changer lt5
everything after # symbol is a comment
a3 is at -15
hsarot 'on'; # sample rotation is ON,
ttol 3; # default temperature tolerance

technical code for the temperature regulation
with new double-1-active heater
tdbl 1;
sics
 table fix_warmup_weight 1
 warmup weight -0.6
 warmup trig 10
 warmup limit 70
 warmup timef 0.2
 warmup abruptstop 1
';
END of technical code for the temperature regulation

hs_lambda '1p15'; hs_resol 'MR';
we choose 1.15A and Medium Resolution (MR)
hs_lambda '1p89'; hs_resol 'HI';
possible choice with 1.89A and
High Intensity (HI)

psinv 1450; # really optional to readjust the presets
 # for SINQ current 1450uA. The default table values are
 # for 1500uA. This adjustment tunes one sweep to be
 # closer to 1/2h. Might be important if SINQ
 # current is very different from 1500uA.

psweep 1; # time in hours for one sweep. Default value is
1/2 hour.

for ($t=230; $t<300.1; $t += 15) {
 # this is the loop over the temperatures
 hcount 6, 'La0.7Sr0.3MnO3_2g,V6x20', 1, $t, '600 3';
 # we count 6 sweeps (default sweep time is 1/2h)
 # with the sample in position no.1 at
 # the temperatures 230, 245, ... After the temperature
 # is in tolerance 3K with the set-point we wait 600s and
 # then count.
}

hcount 300, 'La0.7Sr0.3MnO3_2g,V6x20', 1, 300, '600 5';

this is the end of the script.
__END__
The __END__ is optional, but can be useful...
Everything after the above __END__ is ignored. Might be used for some
chuncks of code you would like to keep, avoiding commenting each line
with '#'-symbol

hs_resol 'MR';
hs_lambda '1p89';
hcount 10,'La0.7Sr0.3MnO3_2g,V6x20',1,1;