Rare decays

FCNC suppressed in the SM
 New heavy particle can contribute with competing diagrams

$$A(i \to f) = = -\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\sum_j \left(C_j < f|O_j|i> + C_j' < f|O_j'|i>\right) + \sum_i C_i^{NP} < f|O_i^{NP}|i>$$

- C_i are short distance Wilson coefficients
 - <f IO_i li> long distance hadronization (form-factors)

Weak Hamiltonian

$$A(i \to f) = \langle f | H_{eff} | i \rangle = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_j \left(C_j < f | O_j | i \rangle + C_j' < f | O_j' | i \rangle \right) + \sum_i C_i^{NP} < f | O_i^{NP} | i \rangle$$

Allows to separate short and long distance contributions
 Allows to classify the NP contributions
 Combine information from different decays

$$\begin{array}{cccc} & & B \to K^{*0}\gamma & B \to K^{*0}\mu^+\mu^- & B \to \mu^+\mu^- \\ & & & & \\$$

The decay is described by three angles θ_{ℓ} , θ_K , ϕ and the dimuon invariant mass q^2

- Observables of interest:
 - F_L (longitudinal polarization fraction of the K^*)
 - The forward-backward asymmetry A_{FB}
 - The observables S_i
- Bilinear combination of the transversity amplitudes A_i
- Depend on Form-factors and Wilson coefficients

$$\frac{1}{\Gamma} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell \right. \\ \left. - F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + \frac{4}{3} A_{FB} \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell \right]$$

Amplitudes

- The decay is described by six complex amplitudes $A^{L,R}_{0,\parallel,\perp}$
- Correspond to different transversity state of the K^{\ast}
- and different (left- and right-handed) chiralities of the dimuon system

$$F_{L} = \frac{A_{0}^{2}}{A_{\parallel}^{2} + A_{\perp}^{2} + A_{0}^{2}} = 1 - F_{T}$$

$$S_{3} = \frac{1}{2} \frac{A_{\perp}^{L2} - A_{\parallel}^{L2}}{A_{\parallel}^{2} + A_{\perp}^{2} + A_{0}^{2}} + L \to R$$

$$S_{4} = \frac{1}{\sqrt{2}} \frac{\Re(A_{0}^{L*}A_{\parallel}^{L})}{A_{\parallel}^{2} + A_{\perp}^{2} + A_{0}^{2}} + L \to R$$

$$S_{5} = \sqrt{2} \frac{\Re(A_{0}^{L*}A_{\perp}^{L})}{A_{\parallel}^{2} + A_{\perp}^{2} + A_{0}^{2}} - L \to R$$

$$A_{FB} = \frac{8}{3} \frac{\Re(A_{\perp}^{L*}A_{\parallel}^{L})}{A_{\parallel}^{2} + A_{\perp}^{2} + A_{0}^{2}} - L \to R$$

$$S_{7} = \sqrt{2} \frac{\Im(A_{0}^{L*}A_{\parallel}^{L})}{A_{\parallel}^{2} + A_{\perp}^{2} + A_{0}^{2}} + L \to R$$

$$S_{8} = \frac{1}{\sqrt{2}} \frac{\Im(A_{0}^{L*}A_{\perp}^{L})}{A_{\parallel}^{2} + A_{\perp}^{2} + A_{0}^{2}} + L \to R$$

$$S_{9} = \frac{\Im(A_{\perp}^{L*}A_{\parallel}^{L})}{A_{\parallel}^{2} + A_{\perp}^{2} + A_{0}^{2}} - L \to R$$

•
$$\Gamma = |A_{\parallel}|^2 + |A_0|^2 + |A_{\perp}|^2$$

• Let's see how the amplitudes depend on Wilson coefficients and form factors

$$\begin{aligned} \mathbf{A}_{1}^{L,R} \propto [(C_{9}^{eff} + C_{9}^{eff'}) \mp (C_{10}^{eff} + C_{10}^{eff'}) \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (C_{7}^{eff} + C_{7}^{eff'}) T_{1}(q^{2})] \\ A_{1}^{L,R} \propto [(C_{9}^{eff} - C_{9}^{eff'}) \mp (C_{10}^{eff} - C_{10}^{eff'}) \frac{A_{1}(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (C_{7}^{eff} - C_{7}^{eff'}) T_{2}(q^{2})] \\ A_{0}^{L,R} \propto [(C_{9}^{eff} - C_{9}^{eff'}) \mp (C_{10}^{eff} - C_{10}^{eff'})] \times [(m_{B}^{2} - m_{K^{*}}^{2} - q^{2})(m_{B} + m_{K^{*}}A_{1}(q^{2}) - \lambda \frac{A_{2}(q^{2})}{m_{B} + m_{K^{*}}})] + 2m_{b} (C_{7}^{eff} + C_{7}^{eff'}) [(m_{B}^{2} + 3m_{K^{*}}^{2} - q^{2})T_{2}(q^{2}) - \frac{\lambda}{m_{B}^{2} - m_{K^{*}}^{2} T_{3}(q^{2})}] \\ \end{aligned}$$

"Clean" observables At low g² and first order

$$\begin{split} A_{\perp}^{L,R} &= \sqrt{2} N m_B (1-\hat{s}) \left[(\mathcal{C}_9^{\text{eff}} + \mathcal{C}_9^{\text{eff}'}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\text{eff}} + \mathcal{C}_7^{\text{eff}'}) \right] \xi_{\perp}(E_{K^*}) \\ A_{\parallel}^{L,R} &= -\sqrt{2} N m_B (1-\hat{s}) \left[(\mathcal{C}_9^{\text{eff}} - \mathcal{C}_9^{\text{eff}'}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\text{eff}} - \mathcal{C}_7^{\text{eff}'}) \right] \xi_{\perp}(E_{K^*}) \\ A_0^{L,R} &= -\frac{N m_B (1-\hat{s})^2}{2\hat{m}_{K^*} \sqrt{\hat{s}}} \left[(\mathcal{C}_9^{\text{eff}} - \mathcal{C}_9^{\text{eff}'}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2\hat{m}_b (\mathcal{C}_7^{\text{eff}} - \mathcal{C}_7^{\text{eff}'}) \right] \xi_{\parallel}(E_{K^*}) \end{split}$$

We now build ratios such that the same combination of FF appears in the numerator and in the denominator

the q² distribution

$$\begin{array}{c} \textbf{Analysis of 1fb^{-1}} \\ \textbf{In the analysis of 1fb^{-1} we did not have enough data to fit the full Pdf, so we used "folding" of angles to simplify the Pdf \\ \hline \phi & \rightarrow -\phi & \text{if } \phi < 0 \\ \theta_{\ell} & \rightarrow \pi - \theta_{\ell} & \text{if } \theta_{\ell} < \pi/2 \end{array} \qquad \begin{array}{c} \textbf{LHCb Collaboration JHEP 08 (2013) 131} \\ \textbf{LHCb Collaboration PRL 111 (2013) 191801} \\ \hline 1 \\ \hline \frac{d^{3}(\Gamma + \bar{\Gamma})}{d\cos\theta_{\ell} d\cos\theta_{K} d\phi} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_{L}) \sin^{2}\theta_{K} + F_{L} \cos^{2}\theta_{K} + \frac{1}{4} (1 - F_{L}) \sin^{2}\theta_{K} \cos 2\theta_{\ell} \\ \hline \end{array} \right]$$

 $- F_L \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \sqrt{F_L (1 - F_L)} P_5' \sin 2\theta_K \sin \theta_\ell \cos \phi \Big]$

Analysis of BO--K*mm (3fb⁻¹)

- Signal selected with BDT which combines kinematic, geometric and PID criteria
- Veto charminium resonances
- Used of charmonia as control channels

- Total signal yield integrated in q^2 : 2398 ± 58 events
- Angular analysis performed in small q^2 bins is more sensitive to NP contributions
- High significance of the signal in all bins
- Independent angular and mass fits in each bins

Likelihood Fit

Four dimensional fit of B-mass, angles (φ, θ_ℓ, θ_K) and simultaneous fit of m(Kπ) (background fraction shared)

$$\log \mathcal{L} = \sum_{i} \log \left[\epsilon(\vec{\Omega}, q^2) f_{\text{sig}} \mathcal{P}_{\text{sig}}(\vec{\Omega}) \mathcal{P}_{\text{sig}}(m_{K\pi\mu\mu}) + (1 - f_{\text{sig}}) \mathcal{P}_{\text{bkg}}(\vec{\Omega}) \mathcal{P}_{\text{bkg}}(m_{K\pi\mu\mu}) \right] + \sum_{i} \log \left[f_{\text{sig}} \mathcal{P}_{\text{sig}}(m_{K\pi}) + (1 - f_{\text{sig}}) \mathcal{P}_{\text{bkg}}(m_{K\pi}) \right]$$

• $\mathcal{P}_{sig}(\Omega) = \frac{d^3\Gamma}{d\cos\theta_\ell d\cos\theta_K d\phi}$ and $\epsilon(\Omega, q^2)$ is the signal efficiency

- $\mathcal{P}_{bkg}(\Omega)$ is modelled with three second order Chebychel polynomial and extracted from the sidebands
- $\mathcal{P}_{bkg}(m_{K\pi\mu\mu})$ is an esponential

Method of Moments

Use orthogonality of spherical harmonics to determine the coefficients

$$\int f_i(\vec{\Omega}) f_j(\vec{\Omega}) \mathrm{d}\vec{\Omega} = \delta_{ij}$$

$$M_{i} = \int \left(\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^{2}}\right) \frac{\mathrm{d}^{3}(\Gamma + \bar{\Gamma})}{\mathrm{d}\vec{\Omega}} f_{i}(\vec{\Omega})\mathrm{d}\vec{\Omega}$$

We sample the angular distribution with our data, so the integral becomes a sum over data

$$\widehat{M}_i = \frac{1}{\sum_e w_e} \sum_e w_e f_i(\vec{\Omega}_e)$$

The weights we accounts for the efficiency

The K*mm anomaly persists

The K*mm anomaly persists

The K*mm anomaly persists

Very good agreement with the recent Belle measurement of P_5 '

A coherent pattern?

LHCb Collaboration JHEP 06 (2014) 133

- All $b \rightarrow s \mu \mu$ branching ratios are measured to be lower than SM predictions
- All these measurements are numerically consistent with a reduced C₉ Wilson coefficient

A coherent pattern?

- All $b \rightarrow s \mu \mu$ branching ratios are measured to be lower than SM predictions
- All these measurements are numerically consistent with a reduced C₉ Wilson coefficient

Larger than expected deviations leven in NP scenarios)

A coherent pattern? A reduced C₉ Wilson coefficient would be visible in a number of other observables, like branching ratios

Wingate et al. <u>Phys. Rev. Lett. 112 (2014) 212003</u> (high q² form factors from lattice QCD)

[Altmannshofer/Straub 1411.3161 & 1503.06199]

If it is a New Particle the best candidate seem to be a Z'

Tension with SM prediction when theory combine this measurements with many others

[Descotes-Genon/Hofer/Matias/Virto 1510.04239]

Charm loop effects?

Non factorizable contribution could be large
(Van Dyk 2013, Zwicky 2015, Silvestrini, Ciuchini 2016, ...)
Charm loop photon mediated can give a C₉-effect
Possibility to explained with "large" charm loop contribution

- S. Jaeger pointed to possible (soft) form factors effects

Charm loop effects?

Hadronic picture: - Large effect from the tails of the ccbar resonances + open charm Zwicky-Lyons 2015

Partonic picture:
Large effect from ccbar loop
Adding an hadronic parameter to the fit it is possible to describe the anomaly

Silvestrini, Ciuchini et al., 2016

NP or hadronic effect? - NP is expected to be universal for all b->smumu transitions - NP is expected to be g² independent

For now we do not have evidence for process dependency or q² dependence

Need more statistics

Trying to handle the ccbar-loop

- Add all the resonances with BW and the try to fit for C9

Trying to handle the ccbar-loop

- Used SM predictions for B⁰->K*mm with no charm loop
- Taking publish measurements for the resonances
- Assuming the penguin pollution having small effect on the resonances
- Contribution from open charm missing

Lepton Flavour Universality (e/mu)

- More complicate J/psi veto
- Harder trigger, reconstruction, PID

R_K Anomaly

Need to correct for q² migration, due to bremsstrahlung
 Total signal yield 264 events

$$\mathcal{R}_{K} = \frac{\mathcal{B}(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \rightarrow K^{+} J/\psi (\mu^{+} \mu^{-}))} \frac{\mathcal{B}(B^{+} \rightarrow K^{+} J/\psi (e^{+} e^{-}))}{\mathcal{B}(B^{+} \rightarrow K^{+} e^{+} e^{-})} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} J/\psi (\mu^{+} \mu^{-})}} \frac{N_{K^{+} J/\psi (e^{+} e^{-})}}{N_{K^{+} e^{+} e^{-}}} \underbrace{\epsilon_{K^{+} J/\psi (\mu^{+} \mu^{-})}}_{\epsilon_{K^{+} \mu^{+} \mu^{-}}} \underbrace{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}}_{\epsilon_{K^{+} \mu^{+} \mu^{-}}} \underbrace{\epsilon_{K^{+} \mu^{+} \mu^{-}}}_{\epsilon_{K^{+} \mu^{+} \mu^{-}}} \underbrace{\epsilon_{K^{+} \mu^{+} \mu^$$

R_K Anomaly

[Descotes-Genon/Hofer/Matias/Virto]

Intriguing deficit in muon branching ratio compatible with the effect in b->smumu analyses (2.6 sigmas from SM)
 QCD uncertainties cancel out in the ratio

- Still statistically limited... need confirmation

Leptonic B-decays

$$B_{(s)}^{0} \to \ell^{+}\ell^{-}$$

$$BR(B_{(q)}^{0} \to \ell^{+}\ell^{-}) = \frac{\tau_{B}G_{F}^{4}M_{W}^{2}sin^{4}\theta_{W}}{8\pi^{5}}|C_{10}V_{tb}V_{tq}^{*}|F_{B}^{2}m_{B}m_{\ell}^{2} \times \sqrt{1 - \frac{4m_{\ell}^{2}}{m_{B}^{2}}}$$

- These decays can be predicted very cleanly since you have only one known hadronic parameter that is FB and can be computed by lattice QCD
- In the SM the only operator which contributes is the axial-vector operator (C_{10})
- They have two suppression, one is because it is FCNC and the other is the helicity suppression

$$\frac{BR(B^0_{(q)} \to \tau^+ \tau^-)}{BR(B^0_{(q)} \to \mu^+ \mu^-)} \sim \frac{m_\tau^2}{m_\mu^2} \qquad \frac{BR(B^0_{(q)} \to \mu^+ \mu^-)}{BR(B^0_{(q)} \to e^+ e^-)} \sim \frac{m_\mu^2}{m_e^2}$$

- Because of Lepton Universality, the only difference between the different leptons is the mass
- The decay of taus is about 250 times more abundant than the decays into muons, but it is experimentally challenging because the taus decays before we track it
 - LFV holds in the SM but not in general in other NP scenarios

Leptonic B-decays

$$\frac{BR(B_{(d)}^{0} \to \mu^{+} \mu^{-})}{BR(B_{(s)}^{0} \to \mu^{+} \mu^{-})} = \frac{\tau_{B_{d}^{0}}}{\tau_{B_{s}^{0}}} \frac{m_{B_{d}^{0}}}{m_{B_{s}^{0}}} \frac{F_{B_{d}^{0}}}{F_{B_{s}^{0}}} (\frac{V_{td}}{V_{ts}})^{2}$$

- The ratio of B_s and B_d decays into leptons depends the ratio of V_{td} and V_{ts} , of B-masses, of B-lifetime and the ratio of the bag parameters
- This is true in all Minimal Flavour Violation theories, so we can test non-MFV models

- In general NP theories the operators that contribute are $O_{10}^{(\prime)}$, $C_s^{(\prime)}$ and $C_P^{(\prime)}$
- Models with an extended Higgs or in general (psudo)-scalar contributions, since they do not have an helicity suppression

B->mm branching ratio

CMS + LHCb

ATLAS

 $\mathcal{B}(B^0_s o \mu^+ \mu^-) = (2.8 \, {}^{+0.7}_{-0.6}) \times 10^{-9}$

 ${\cal B}(B^0 o \mu^+ \mu^-) = \left(3.9 \, {}^{+1.6}_{-1.4}
ight) imes 10^{-10}$

 $B(B^{0}_{s} \rightarrow \mu^{+}\mu^{-}) = 0.9^{+1.1}_{-0.8} \times 10^{-9}$

 $B(B^{\scriptscriptstyle 0} \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}) < 4.2 \times 10^{\scriptscriptstyle -10}$ at 95% CL

- If there is NP in C10 this will have to be confirmed in Bs->mm

Measurements at LHC

Radiative decays

- B⁺→K⁺π⁻π⁺γ
- $B^0 \rightarrow K^{*0}e^+e^-$
- $B_s \rightarrow \phi \gamma$
- b-baryons: $\Lambda_{b} \rightarrow \Lambda \gamma$, $\Xi_{b} \rightarrow \Xi \gamma$, $\Omega_{b} \rightarrow \Omega \gamma$

$J/\psi(1S)$ $\mathcal{C}_{7}^{(\prime)}$ $\psi(2S)$ $\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}}$ $\mathcal{C}_{7}^{(\prime)}\mathcal{C}_{9}^{(\prime)}$ interference $\mathcal{C}_{9}^{(\prime)} \text{ and } \mathcal{C}_{10}^{(\prime)}$ Long distance contributions from $c\bar{c}$ above open charm threshold $4 [m(\mu)]^{2}$ $\mathcal{Q}_{7}^{(\prime)} = q^{2}$

Results with 1fb-1

 $\frac{\mathcal{B}(B^0 \to K^{*0} \gamma)}{\mathcal{B}(B^0_s \to \phi \gamma)} = 1.23 \pm 0.06 \text{ (stat.)} \pm 0.04 \text{ (syst.)} \pm 0.10 \text{ (}f_s/f_d\text{)}$

 $\mathcal{A}_{CP}(B^0 \to K^{*0}\gamma) = (0.8 \pm 1.7 \text{ (stat.)} \pm 0.9 \text{ (syst.)})\%.$

→ In the SM, photons from $b \rightarrow s\gamma$ decays are predominantly left-handed $(C_7/C_7' \sim m_b/m_s)$ due to the charged-current interaction.

very low q² sensitive to photon polarization

- Can infer the photon polarisation from the up-down asymmetry of the photon direction in the K⁺π⁻π⁺ rest-frame. Unpolarised photons would have no asymmetry.
- This is conceptionally similar to the Wu experiment, which first observed parity violation.

 $\mathcal{A}_{up/down} = \frac{\int_0^1 \frac{d\Gamma}{d\cos\theta} d\cos\theta - \int_{-1}^0 \frac{d\Gamma}{d\cos\theta} d\cos\theta}{\int_{-1}^1 \frac{d\Gamma}{d\cos\theta} d\cos\theta} \propto \lambda_{\gamma}$

- Combining the 4 bins, the photon is observed to be polarised at 5.2σ.
- Unfortunately you need to understand the hadronic system to know if the polarisation is left-handed, as expected in the SM.

[PRL 112, 161801 (2014)]

 \rightarrow First observation of photon polarisation in $b \rightarrow s \gamma$ decays

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \operatorname{dcos} \theta_\ell \operatorname{dcos} \theta_K \operatorname{d}\tilde{\phi}} = \frac{9}{16\pi} \left[\frac{3}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K + F_{\mathrm{L}} \cos^2 \theta_K + \left(\frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K - F_{\mathrm{L}} \cos^2 \theta_K \right) \cos 2\theta_\ell + \left(\frac{1}{2} (1 - F_{\mathrm{L}}) \mathbf{A}_{\mathrm{T}}^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\tilde{\phi} + (1 - F_{\mathrm{L}}) \mathbf{A}_{\mathrm{T}}^{\mathrm{Re}} \sin^2 \theta_K \cos \theta_\ell + \frac{1}{2} (1 - F_{\mathrm{L}}) \mathbf{A}_{\mathrm{T}}^{\mathrm{Re}} \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\tilde{\phi} \right]$$

$$A_{\rm T}^{(2)}(q^2 \to 0) = \frac{2\mathcal{R}e(\mathcal{C}_7\mathcal{C}_7^{'*})}{|\mathcal{C}_7|^2 + |\mathcal{C}_7^{'}|^2}$$
$$A_{\rm T}^{\rm Im}(q^2 \to 0) = \frac{2\mathcal{I}m(\mathcal{C}_7\mathcal{C}_7^{'*})}{|\mathcal{C}_7|^2 + |\mathcal{C}_7^{'}|^2}$$

access to the photon polarization information [D. Becirevic and E. Schneider Nucl. Phys. B 854 (2012) 321]

Results:

$$F_{\rm L} = 0.16 \pm 0.06 \pm 0.03$$

$$A_{\rm T}^{\rm Re} = +0.10 \pm 0.18 \pm 0.05$$

$$A_{\rm T}^{(2)} = -0.23 \pm 0.23 \pm 0.05$$

$$A_{\rm T}^{\rm Im} = +0.14 \pm 0.22 \pm 0.05$$

SM predictions:

$$F_{\rm L} = 0.10^{+0.11}_{-0.05}$$

 $A_{\rm T}^{\rm Re} = -0.15^{+0.04}_{-0.03}$
 $A_{\rm T}^{(2)} = +0.03^{+0.05}_{-0.04}$
 $A_{\rm T}^{\rm Im} = (-0.2^{+1.2}_{-1.2}) \times 10^{-4}$

- Compatible with SM predictions
- Best sensitivity to C7' up to date

Inclusive

$$\mathcal{B}(B \to X_s \gamma)|_{E_{\gamma} > 1.6 \text{ GeV}} = (3.43 \pm 0.22) \times 10^{-4}$$

Measurement by CLEO, BELLE and BaBar

$$\mathcal{B}(\bar{B} \to X_s \gamma)|_{E_{\gamma} > 1.6 \text{GeV}} = (3.15 \pm 0.23) \times 10^{-4}$$

NLLO predictions

- Radiative decays allow to probe the operator 07 and 07'
- Inclusive decays are cleaner from experimental point of view, but are more difficult experimentally
- The sum of O7 and O7' is constrained from the b—>s gamma measurement, but to probe O7 and O7' separately need to an angular analysis (probing the photon polarization)

Other rare decays

Rare D-decays

FCNC in D-meson decays are more suppressed than in B-mesons

	······································			
Γ_{235}	$D^0 o \gamma\gamma$	<2.2 ×10 ⁻⁶	CL=90%	932
Γ ₂₃₆	$D^0 ightarrow e^+ e^-$	<7.9 ×10 ⁻⁸	CL=90%	932
Γ ₂₃₇	$D^0 ightarrow \mu^+ \mu^-$	<1.4 ×10 ⁻⁷	CL=90%	926
Γ_{238}	$D^0 ightarrow \pi^{0} e^+ e^-$	<4.5 ×10 ⁻⁵	CL=90%	928
Γ ₂₃₉	$D^0 o \pi^0 \mu^+ \mu^-$	<1.8 ×10 ⁻⁴	CL=90%	915
Γ_{240}	$D^0 o \eta e^+ e^-$	<1.1 ×10 ⁻⁴	CL=90%	852
Γ ₂₄₁	$D^0 o \eta \mu^+ \mu^-$	<5.3 ×10 ⁻⁴	CL=90%	838
Γ_{242}	$D^0 ightarrow \pi^+\pi^-e^+e^-$	<3.73 ×10 ⁻⁴	CL=90%	922
Γ ₂₄₃	$D^0 ightarrow ho^0 e^+ e^-$	<1.0 ×10 ⁻⁴	CL=90%	771
Γ_{244}	$D^0 ightarrow \pi^+\pi^-\mu^+\mu^-$	<3.0 ×10 ⁻⁵	CL=90%	894
Γ_{245}	$D^0 ightarrow ho^0 \mu^+ \mu^-$	<2.2 ×10 ⁻⁵	CL=90%	754
Γ_{246}	$D^0 ightarrow \omega e^+ e^-$	<1.8 ×10 ⁻⁴	CL=90%	768
Γ ₂₄₇	$D^0 ightarrow \omega \mu^+ \mu^-$	<8.3 ×10 ⁻⁴	CL=90%	751
Γ_{248}	$D^0 \rightarrow K^- K^+ e^+ e^-$	<3.15 ×10 ⁻⁴	CL=90%	791
Γ ₂₄₉	$D^0 ightarrow \phi e^+ e^-$	<5.2 ×10 ⁻⁵	CL=90%	654
Γ_{250}	$D^0 ightarrow K^- K^+ \mu^+ \mu^-$	<3.3 ×10 ⁻⁵	CL=90%	710
Γ_{251}	$D^0 o \phi \mu^+ \mu^-$	<3.1 ×10 ⁻⁵	CL=90%	631
Γ ₂₅₂	$D^0 ightarrow \overline{K}^0 e^+ e^-$	<1.1 ×10 ⁻⁴	CL=90%	866
Γ ₂₅₃	$D^0 ightarrow \overline{K}^0 \mu^+ \mu^-$	<2.6 ×10 ⁻⁴	CL=90%	852
Γ_{254}	$D^0 ightarrow K^- \pi^+ e^+ e^-$	<3.85 ×10 ⁻⁴	CL=90%	861

Predictions:

SM prediction for the BR ~10-9

Rare K-decays

Γ_{23} Γ_{24} Γ_{25}	$K(L)0 \rightarrow \mu^{+}\mu^{-}$ $K(L)0 \rightarrow e^{+}e^{-}$ $K(L)0 \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}$	$(6.84 \pm 0.11) \times 10^{-9}$ $(9 {}^{+6}_{-4}) \times 10^{-12}$ $(3.11 \pm 0.19) \times 10^{-7}$		225 249 206
Γ_{11} Γ_{12}	$K(S)0 \rightarrow \mu^+\mu^-$ $K(S)0 \rightarrow e^+e^-$	<9 ×10 ⁻⁹ <9 ×10 ⁻⁹	CL=90% CL=90%	225 249
Γ_{13} Γ_{14}	$K(S)0 \rightarrow \pi^0 e^+ e^-$ $K(S)0 \rightarrow \pi^0 \mu^+ \mu^-$	$(3.0 + 1.5)_{-1.2} \times 10^{-9}$ $(2.9 + 1.5)_{-1.2} \times 10^{-9}$		230 177
Γ_{36} Γ_{37} Γ_{38}	$\begin{array}{c} K^+ \rightarrow \pi^+ e^+ e^- \\ K^+ \rightarrow \pi^+ \mu^+ \mu^- \\ K^+ \rightarrow \pi^+ \nu \overline{\nu} \end{array}$	$(3.00 \pm 0.09) \times 10^{-7}$ $(9.4 \pm 0.6) \times 10^{-8}$ $(1.7 \pm 1.1) \times 10^{-10}$	S=2.6	227 172 227

Still more precision might give us surprises (e.g. NA62 experiment)

Conclusions and outlook

Conclusions

- Indirect searches allow to probe very high energy scales, much higher than those reachable at central colliders
- Study of b-hadrons strongly constraint BSM and test the CKM paradigm (which seems to hold... but room for NP is still left —> more precision)
- There are some intriguing discrepancies in B-physics: test of lepton universality in semileptonic and B-decays and b—>sll transitions —> more statistics, better theory understanding
- In the next few years we will know if these discrepancies wrt SM predictions are genuine sign of NP

Searches for LFV decays

LFV due to neutrino oscillations

Neutrino masses induce LFV at loop level, e.g. mu->e gamma

$$\mathcal{B}(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{i1}^2}{M_W^2} \right|^2 \sim 10^{-54}$$

Because their standard-model branching ratios are far too tiny for possible detection, observation of any mode would be certain evidence of new physics. That's what makes such sensitive searches potentially transformative. **S.L. Glashore**

Mu—> e transitions

Model in dependent transition

m—>e gamma

- Signal: $N_{sig} = R_{\mu} \times \mathcal{B}(\mu \to e\gamma)$
- Physic Bkg: $N_{RD} \propto R_{\mu} \times \mathcal{B}(\mu \to e\gamma 2\nu)$
- Accidental Bkg: $N_{Acc} \propto R^2_{\mu} \times (\Delta \Theta)^2 \times (\Delta E_{\gamma})^2 \times \Delta T \times \Delta E$

Signal and background

- Signal: $N_{sig} = R_{\mu} \times \mathcal{B}(\mu \to e\gamma)$
- Physic Bkg: $N_{RD} \propto R_{\mu} \times \mathcal{B}(\mu \to e\gamma 2\nu)$
- Accidental Bkg: $N_{Acc} \propto R^2_{\mu} \times (\Delta \Theta)^2 \times (\Delta E_{\gamma})^2 \times \Delta T \times \Delta E$

Michel spectrum

Tau LFV decays

In general one expects τ LFV more sensitive to NP e.g. $\tau \rightarrow 3\mu$ predicted at the level of 10^{-8} in some NP scenarios

Meson LFV decays

Decays of the type $H \rightarrow e\mu h$ are sensitive to "contact models" (e.g. leptoquarks)

Year	90% CL	Collaboration/Lab	Reference
1966	1.0×10^{-4}	BNL	Carpenter et al. [1966]
1967	$8.0 imes 10^{-6}$	BNL	Fitch <i>et al.</i> [1967]
1967	$9.0 imes 10^{-6}$	CERN	Bott-Bodenhausen et al. [1967]
1988	1.1×10^{-8}	BNL	Cousins et al. [1988]
1988	$6.7 imes 10^{-9}$	BNL	Greenlee et al. [1988]
1989	$1.9 imes 10^{-9}$	BNL	Schaffner et al. [1989]
1989	2.2×10^{-10}	BNL/E791	Mathiazhagan et al. [1989]
1989	4.3×10^{-10}	KEK	Inagaki <i>et al.</i> [1989]
1993	$3.3 imes 10^{-11}$	BNL/E791	Arisaka et al. [1993]
1995	9.4×10^{-11}	KEK/E137	Akagi et al. [1995]
1998	4.7×10^{-12}	BNL/E871	Ambrose et al. [1998]

History of $K_L \to e\mu$

Limits of $B^+ \to h^+ e\mu$, $B^0_{(s)} \to e\mu$ at the level of 10^{-8}

CPV in Mixing

<u>CP</u> violated in mixing if $a_{mix}(t) \neq a_{mix}(t)$ • requires relative phase arg (q/p) ≠ 0 between dispersive part M_{12} and absorptive part Γ_{12} of the $B^0 \leftrightarrow \overline{B}^0$ transition amplitude:

 $a_{mix}(t) = \frac{\cos(\Delta m \cdot t) + \delta \cdot \cosh(\Delta \Gamma \cdot t/2)}{\cosh(\Delta \Gamma \cdot t/2) + \delta \cdot \cos(\Delta m \cdot t)}$ $\overline{a}_{mix}(t) = \frac{\cos(\Delta m \cdot t) - \delta \cdot \cosh(\Delta \Gamma \cdot t/2)}{\cosh(\Delta \Gamma \cdot t/2) - \delta \cdot \cos(\Delta m \cdot t)}$

$$\overline{d} \quad V_{td} \quad \overline{u}, \overline{c}, \overline{t} \quad V_{tb}^* \quad \overline{b}$$

$$\overline{B}^0 \quad W^{\pm} \qquad W^{\pm} \qquad W^{\pm} \qquad B^0$$

$$b \quad V_{tb}^* \quad u, c, t \quad V_{td} \quad d$$

$$\delta = \frac{1 - |q/p|^2}{1 + |q/p|^2} ; \frac{q}{p} = -\sqrt{\frac{M_{12}^* - (i/2)\Gamma_{12}^*}{M_{12} - (i/2)\Gamma_{12}}}$$

• remember: $B^0 \leftrightarrow \overline{B}^0$ transition amplitude described by effective Hamiltonian

$$H_{12} = M_{12} - (i/2) \Gamma_{12}$$

- M_{12} : transitions through off-shell intermediate states, $M_{12} \propto m_t^2 \cdot (V_{td} V_{tb}^*)^2$
- Γ_{12} : transitions through on-shell intermediate states, $\Gamma_{12} \propto m_c^2 \cdot (V_{cd} V_{cb}^*)^2$
- different weak phases as required for CP violation
- $\Gamma_{12} \ll M_{12} \Rightarrow$ interference term small $\Rightarrow CP$ violation in mixing small
 - New Physics can enter in box and have significant effect

CPV in the decay <u>CP violated in decay if $A(\overline{B} \rightarrow \overline{f}) \neq A(\overline{B} \rightarrow \overline{f})$ </u>

 requires interference of (at least) two decay amplitudes with different weak phase and different strong phase leading to the same final state

$$\begin{array}{ll} \mathbf{A}_{f} \equiv \mathbf{A}(\mathbf{B} \rightarrow \mathbf{f}) = \sum_{i} a_{i} e^{i(\delta_{i} + \phi_{i})} \\ \overline{\mathbf{A}}_{\bar{f}} \equiv \mathbf{A}(\overline{\mathbf{B}} \rightarrow \overline{\mathbf{f}}) = \sum_{i} a_{i} e^{i(\delta_{i} - \phi_{i})} \end{array} \right\} \begin{array}{l} \phi_{i}: \text{ weak phase, changes sign under } CP \\ \overline{\mathbf{A}}_{\bar{f}} \equiv \mathbf{A}(\overline{\mathbf{B}} \rightarrow \overline{\mathbf{f}}) = \sum_{i} a_{i} e^{i(\delta_{i} - \phi_{i})} \end{array} \right\} \begin{array}{l} \phi_{i}: \text{ strong phase, does not change sign under } CP \\ \overline{\mathbf{A}}_{\bar{f}} |^{2} - |\overline{\mathbf{A}}_{\bar{f}}|^{2} = -2 \sum_{ij} a_{i} a_{j} \cdot \sin(\phi_{i} - \phi_{j}) \cdot \sin(\delta_{i} - \delta_{j}) \end{array}$$

interference and CP violation can be large

- New Physics can enter through loops if penguin diagrams involved
- but have to battle large theoretical uncertainties due to the strong phases

CPV in the interference

For decays into a CP eigenstate f that is accessible to both $B^{0}_{(s)}$ and $\overline{B}^{0}_{(s)}$

• CP violated if

$$\operatorname{Im}\left(\lambda_{f}\right) \equiv \operatorname{Im}\left(\frac{q}{p} \cdot \frac{\overline{A}_{f}}{A_{f}}\right) \neq 0$$

time-dependent decay rate asymmetry:

$$\begin{aligned} \mathbf{a}_{f}(t) &= \frac{N(B_{t=0}^{0} \rightarrow f, t) - N(\overline{B}_{t=0}^{0} \rightarrow f, t)}{N(B_{t=0}^{0} \rightarrow f, t) + N(\overline{B}_{t=0}^{0} \rightarrow f, t)} \\ &\approx \frac{-C_{f} \cos(\Delta m \cdot t) + S_{f} \sin(\Delta m \cdot t)}{\cosh(\Delta \Gamma \cdot t/2) + \Omega_{f} \sinh(\Delta \Gamma \cdot t/2)} \end{aligned}$$

$$\mathbf{C}_{f} = \frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}} ; \mathbf{S}_{f} = \frac{2 \cdot \operatorname{Im}(\lambda_{f})}{1 + |\lambda_{f}|^{2}}$$
$$\Omega_{f} = \mathbf{1} - \mathbf{S}_{f}^{2} - \mathbf{C}_{f}^{2}$$

- the ideal case: asymmetries can be large and no strong phase involved
- if one single decay amplitude dominates: $|\overline{A}_f/A_f| = 1 \implies |\lambda_f| = 1$

$$\mathbf{a}_{f}(t) = \frac{\mathrm{Im}(\lambda_{f}) \cdot \mathrm{sin}(\Delta m \cdot t)}{\mathrm{cosh}(\Delta \Gamma \cdot t/2) + \mathrm{Re}(\lambda_{f}) \cdot \mathrm{sinh}(\Delta \Gamma \cdot t/2)}$$

• in $B^0\overline{B}^0$ system: $\Delta\Gamma_d \approx 1$

 $a_{f}(t) = \operatorname{Im}(\lambda_{f}) \cdot \operatorname{sin}(\Delta m \cdot t)$

CP Violation in decay

Consider $\{|P\rangle, |\bar{P}\rangle\}$ decaying into the final state $\{|f\rangle, |\bar{f}\rangle\}$

Defining $A_f = \langle f | P \rangle$ $A_{\bar{f}} = \langle \bar{f} | P \rangle$ $\bar{A}_f = \langle f | \bar{P} \rangle$ $\bar{A}_{\bar{f}} = \langle f | \bar{P} \rangle$

We have CP violation in the decay if

$$\left|\frac{\bar{A}_{\bar{f}}}{A_f}\right| \neq 1 \quad \left|\frac{A_{\bar{f}}}{\bar{A}_f}\right| \neq 1$$

Then the probability of the decay of the CP conjugate $\Gamma(P^0 \to f) \neq \Gamma(\bar{P}^0 \to \bar{f})$

CP Violation in mixing

CP violation in mixing occurs when the oscillation from meson to anti-meson is different than that of anti-meson to meson

$$\operatorname{Prob}(P^0 \to \overline{P}^0) \neq \operatorname{Prob}(\overline{P}^0 \to P^0)$$

These probabilities are given by

$$\wp_{P \to \bar{P}}(t) = \left| \left\langle \bar{P} | P(t) \right\rangle \right|^2 = \left| \frac{q}{p} g_-(t) \right|^2$$

$$\wp_{\bar{P}\to P}\left(t\right) = \left|\left\langle P|P\left(t\right)\right\rangle\right|^{2} = \left|\frac{P}{q}g_{-}\left(t\right)\right\rangle$$

So this occurs when

$$\left. \frac{q}{p} \right| \neq 1$$

