EXOTIC SEARCHES

PSI Summer School ExothiggsLyceum Alpinum Zuoz, 15-19 August 2016Lecture 2: Dark Matter, Long-lived particles, prospects

DIPARTIMENTO DI FISICA

Shahram Rahatlou http://www.roma1.infn.it/people/rahatlou/

REFERENCES

• Exotica

- ATLAS:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
 http://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G

- SUSY results
 - ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ SupersymmetryPublicResults
 - CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

OUTLINE

- Motivation for New Physics
- Exotic searches
- Dark Matter at Colliders
- Long-Lived Particles
- Supersymmetry (maybe)
- Prospects at 13 TeV and beyond

Then why not DARK MATTER INTERACTION

- Exact interaction of DM with ordinary matter determines relic abundance
- Dark Matter as a particle hints at many interactions with ordinary matter

• Each type of interaction requires different experimental technique and types of detector to be studied

INDIRECT DETECTION

- Annihilation in high energy photons, particle-anti-particle pairs
- search for ultra-relativistic objects produced in galactic halo
 - observatory on earth or with satellites

INDIRECT DETECTION

DIRECT DETECTION

DIRECT DETECTION

Shahram Rahatlou, Roma Sapienza & INFN

DIRECT DARK MATTER SEARCHES

DIRECT DARK MATTER SEARCHES

X + MET

- Radiated by initial partons necessary to trigger the event
- Presence of high energy photon/W/Z/Higgs or jet(s) in addition to large missing transverse energy
- Results interpreted in terms of cross section on nucleons
 - limitations due to (in)validity of effective theories

INTERPRETATION

X + MET INTERPRETATION

• Original intent

- complementary approach to direct searches at low mass

• Criticism to use of effective theories

 mediator mass assumed to be negligible at LHC

- But keep in mind:
 - robust measurement free of assumptions
 - only interpretation affected by theoretical assumptions

MODELLING THE DM INTERACTION

$$\sigma(pp \to \bar{\chi}\chi + X) \sim \frac{g_q^2 g_\chi^2}{(q^2 - M^2)^2 + \Gamma^2/4} E^2$$
$$\Lambda \equiv M/\sqrt{g_\chi g_q}$$

• Pair-production of χ can be characterized by a contact interaction with operators

$$\mathcal{O}_{V} = \frac{(\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma^{\mu}q)}{\Lambda^{2}}$$
$$\mathcal{O}_{AV} = \frac{(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q)}{\Lambda^{2}}$$

q g g g g g $V, A(M_{med})$ g $\chi(m_{\chi})$ $\chi(m_{\chi})$

~ $1/\Lambda^4 E^2$ for $M \rightarrow 40$ TeV (EFT)

vector --> spin independent (SI)

axial-vector --> spin-dependent (SD)

• Cross section depends on the mass (m_{χ}) and the scale Λ (for couplings g_{χ} , g_q)

2 2

$$\sigma_{SI} = 9 rac{\mu^2}{\pi \Lambda^4} \qquad \Lambda = M/\sqrt{g_{\chi}g_q}$$

 $\sigma_{SD} = 0.33 \frac{\mu^2}{\pi \Lambda^4} \qquad \mu = \frac{m_{\chi} m_p}{m_{\chi} + m_p}$

spin-independent and spin-dependent cross sections

[Bai, Fox and Harnik, JHEP 1012:048 (2010)] [Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu, Phys.Rev.D82:116010 (2010)] [Beltran, Hooper, Kolb, Krusberg, Tait, JHEP 1009:037 (2010)]

Shahram Rahatlou, Roma Sapienza & INFN

FROM EFT TO SIMPLIFIED MODELS

- Use SUSY approach
 - simplified models for final state
 - Four parameters
 - provide 2D constraints in (m_X, m_{mediator}) plane
 - -assumptions for g_q and g_{DM}

HIGGS PORTAL TO DARK MATTER

- Discovery of Higgs has opened new doors to Dark matter
- New searches to investigate coupling of dark matter candidates to Higgs boson
- mono-Higgs: Higgs + missing energy through new operator

produced via both quarks and gluons

q, g

- $-m_{DM} < m_H/2$: Higgs decay to DM pair
 - Currently branching ratio of invisible Higgs decays < ~30%
 - \Rightarrow expect to reach BR < 0.2-0.3% with 3000 fb⁻¹
- $-m_{DM} > m_H/2$: DM pair from virtual Higgs
 - Distinctive signature with forward jets

 $\begin{array}{c}h, Z, \gamma,\\ Z' S\end{array}$

X + MET SIGNATURES AFTER RUN1

 α

MONO-W + MET

- W being charged can distinguish between u and d quarks
 Need to account for interference
- Leptonic W decays
 - pro: clean high-pt lepton signature; single-lepton trigger
 - con: small branching ratio
- Hadronic W decays
 - pro: large branching ratio
 - con: large SM backgrounds

SUMMARY OF CURRENT SEARCHES

- mono-jet
 - strongest constraints
- mono-photon
 - more challenging for background estimation
 - less powerful: EW vs. strong interaction
- mono-W/Z leptonic
 - clean signature and simple trigger
 - penalized by W/Z branching fraction
- mono-W/Z hadronic
 - larger statistics with larger background
- mono-t/b
- ttbar/bbbar + MET
- Search for mediator in dijet final state

Mono-Jet Candidate

Shahram Rahatlou, Roma Sapienza & INFN

MONO-JET SPECTRUM

MONO-PHOTON CANDIDATE

MONO-PHOTON SPECTRUM

INTERPRETATION

Shahram Rahatlou, Roma Sapienza & INFN

LONG-LIVED PARTICLES

LONG-LIVED PARTICLES

- Most exotic part of exotic program
- Search for long-lived particles relies on detector features more than other exotic searches
 - dedicated trigger
 - stopped particles
 - dedicated reconstruction algorithms
 - > muon reconstruction: heavy stable charged particles
 - tracking: disappearing tracks
 - dedicated detector calibration
 - ▶ calorimeter time calibration
- Many searches in Run I but no discrepancy or excess

LONG-LIVED APPROACHES

- Delayed tracks
 - classic heavy stable charged particles
- Tracks with large impact parameters
 - standalone muons in muons system
 - two or more tracks displaced from primary vertex
- Spatially displaced vertices
 - both for high and low mass particles
 - some dedicated tracking to increase efficiency for tracks displaced from primary vertex
- Displaced jets
 - relies on displaced tracks
- Delayed photons
 - measurement of time of flight with ECAL
 - photon conversions

Shahram Rahatlou, Roma Sapienza & INFN

LONG-LIVED TIMELINE

Detector Understanding (time

- Delayed charged tracks
- Tracks with large impact parameters
- Spatially displaced vertices
- Displaced Jets
- Delayed photons

Models for Reinterpretation

ATLAS SUMMARY

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/ATLAS_Exotics_LLP_Summary/ATLAS_Exotics_LLP_Summary.pdf

ATLAS Long-lived Particle Searches* - 95% CL Exclusion Status: July 2015

ATLAS Preliminary

 $\int \mathcal{L} dt = (18.4 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}$

	Model	Signature	∫£ dt[fb⁻	-1]	Lifetime limit			Reference
	$\operatorname{RPV}\chi_1^0 \to eev/e\mu v/\mu\mu v$	displaced lepton pair	20.3	χ_1^0 lifetime	7-740 mm		$m(ilde{g})=1.3$ TeV, $m(\chi^0_1)=1.0$ TeV	1504.05162
SUSY	$\operatorname{GGM} \chi^0_1 \to Z \tilde{G}$	displaced vtx + jets	20.3	χ_1^0 lifetime	6-480 mm		$m(ilde{g})=1.1$ TeV, $m(\chi_1^0)=1.0$ TeV	1504.05162
	AMSB $pp \rightarrow \chi_1^{\pm} \chi_1^0, \chi_1^+ \chi_1^-$	disappearing track	20.3	χ_1^{\pm} lifetime		0.22-3.0 m	$m(\chi_1^{\pm})=$ 450 GeV	1310.3675
	AMSB $pp \rightarrow \chi_1^{\pm} \chi_1^0, \chi_1^+ \chi_1^-$	large pixel dE/dx	18.4	χ_1^{\pm} lifetime		1.31-9.0 m	$m(\chi_1^{\pm})=$ 450 GeV	1506.05332
	GMSB	non-pointing or delayed γ	20.3	χ_1^0 lifetime		0.08-5.4 m	SPS8 with $\Lambda=200~\text{TeV}$	1409.5542
	Stealth SUSY	2 ID/MS vertices	19.5	Š lifetime			0.12-90.6 m $m(\tilde{g}) = 500 \text{ GeV}$	1504.03634
Higgs BR = 10%	Hidden Valley $H \rightarrow \pi_{\nu} \pi_{\nu}$	2 low-EMF trackless jets	20.3	π_v lifetime		0.41-7.57 m	$m(\pi_{ m v})=25~{ m GeV}$	1501.04020
	Hidden Valley $H \rightarrow \pi_{\nu} \pi_{\nu}$	2 ID/MS vertices	19.5	π_v lifetime		0.31-25.4 m	$m(\pi_{ m v})=25~{ m GeV}$	1504.03634
	FRVZ $H \rightarrow 2\gamma_d + X$	2 <i>e</i> −, <i>μ</i> −, <i>π</i> −jets	20.3	γ _d lifetime	14-140 mm		$H \rightarrow 2\gamma_d + X, m(\gamma_d) = 400 \text{ MeV}$	1409.0746
	FRVZ $H \rightarrow 4\gamma_d + X$	2 <i>e</i> −, <i>μ</i> −, <i>π</i> −jets	20.3	γ _d lifetime	15-260 mm		$H ightarrow 4\gamma_d + X, m(\gamma_d) = 400 \; { m MeV}$	1409.0746
Higgs BR = 5%	Hidden Valley $H \rightarrow \pi_v \pi_v$	2 low-EMF trackless jets	20.3	π_v lifetime		0.6-5.0 m	$m(\pi_{ m v})=25~{ m GeV}$	1501.04020
	Hidden Valley $H \rightarrow \pi_v \pi_v$	2 ID/MS vertices	19.5	π_v lifetime		0.43-18.1 m	$m(\pi_{ m v})=25~{ m GeV}$	1504.03634
	FRVZ $H \rightarrow 4\gamma_d + X$	2 <i>e</i> -, μ-, π-jets	20.3	$\gamma_{\rm d}$ lifetime	28-160 mm		$H ightarrow 4\gamma_d + X, \ m(\gamma_d) = 400 \ { m MeV}$	1409.0746
300 GeV scalar	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 low-EMF trackless jets	20.3	π_v lifetime		0.29-7.9 m	$\sigma \times BR = 1 \text{ pb, } m(\pi_v) = 50 \text{ GeV}$	1501.04020
	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 ID/MS vertices	19.5	π_v lifetime		0.19-31.9	$\sigma = m \sigma \times BR = 1 \text{ pb, } m(\pi_v) = 50 \text{ GeV}$	1504.03634
900 GeV scalar	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 low-EMF trackless jets	20.3	π_v lifetime		0.15-4.1 m	$\sigma \times BR = 1 \text{ pb, } m(\pi_v) = 50 \text{ GeV}$	1501.04020
	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 ID/MS vertices	19.5	π_v lifetime		0.11-18.3 m	$\sigma imes BR$ = 1 pb, $m(\pi_{ m v}) = 50~{ m GeV}$	1504.03634
Other	HV Z'(1 TeV) $\rightarrow q_{\rm v} q_{\rm v}$	2 ID/MS vertices	20.3	π_v lifetime		0.1-4.9 m	$\sigma \times BR$ = 1 pb, $m(\pi_v) = 50 \text{ GeV}$	1504.03634
	HV Z' (2 TeV) $ ightarrow q_{ m v} q_{ m v}$	2 ID/MS vertices	20.3	π_v lifetime		0.1-10.1 m	$\sigma \times BR = 1 \text{ pb}, \ m(\pi_v) = 50 \text{ GeV}$	1504.03634
				0.01	0.1	1 10	¹⁰⁰ cτ [m]	
			$\sqrt{s} = 8$	B TeV			[]	

CMS SUMMARY

https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsCombined/exo-limits_LL_Moriond_2016.pdf CMS long-lived particle searches, lifetime exclusions at 95% CL

HEAVY STABLE CHARGED PARTICLES

- In many flavors of SUSY, LSP is a heavy charged particle, stau, stop, gluino
 split SUSY, GMSB, KK tau from some universal extra dimension models
- Behave like very heavy muon through tracking and muons detector
 - $-\beta$ <1 so later time of arrival in detectors compared to common relati particles from collisions
 - Smaller velocity implies larger ionization energy loss
- Search for muon like particles and measure dE/dx energy loss
- Dedicated muon reconstruction because of late arrival compared to standard muon

ETH Institute for

Particle Physics
ANALYSIS METHOD

- Discriminating variables
 - -High pt tracks
 - -ionization energy loss
 - -time of flight

MASS MEASUREMENT FROM dE/dx

- Quadratic relation between measured energy loss $I_{\rm h}$ and mass
- Determine K and C from fit to known particles (pions, kaons, protons)
- Determine mass of heavy particles based on measured I_h and momentum p

Shahram Rahatlou, Roma Sapienza & INFN

HSCP MASS

DISPLACED JETS

Ζ'

Z' decays into v-quarks, which hadronize into $\pi_v s$.

DISPLACED JETS

106

DISPLACED JET INTERPRETATION

10 [~]

Shahram Rahatlou, Roma Sapienza & INFN

10

DELAYED CONVERTED PHOTONS

LONG-LIVED NEUTRALINO

DELAYED PHOTON WITH TIMING

In-time photon →Arrival time compatible with that of a relativistic particle from the IP

Non-zero lifetime

Off-time photon

Arrival time sensibly increases with parent particle lifetime $\Delta T \sim O(ns)$

DELAYED PHOTONS IN 7 TEV DATA

- This analysis requires detailed study and calibration of ECAL time measurement
 - No other physics client than this analysis so far

EXO-11-035

LONG-LIVED SUMMARY

- Search for long-lived particles use simple and basic detector information
 - unlike some of sophisticated variables needed in many Higgs and BSM searches
- Deeper understanding of detector response typically implies longer time scale for long-lived searches

 and longer term detector activity commitment
- Displaced vertices remain perhaps most profitable approach
 - results can be interpreted in many models, specially in terms of some flavor of some Higgs-like particle
 - Higgs remains a catchy name
- Time of flight for photons and electrons requires heavy investment in detector studies but can pay dividends
 - clean experimental signature

- unfortunately not enough theoretical models to get people excited Shahram Rahatlou, Roma Sapienza & INFN

A SOLUTION TO HIGGS MASS DIVERGENCE

- scalar particles contribution to Higgs mass also quadratically divergent with MUV
- Contribution with opposite sign compared to fermions

- If such scalar particles existed, fermion and scalar contributions could cancel each other exactly and naturally without fine tuning
- Such conspiracy is generally known as a symmetry of the theory!

SUPERSYMMETRY (SUSY)

• Elegant new symmetry of Nature

- For each ½-integer spin particle (Fermion) there is an integer spin partner (Boson) and vice versa
 - Complete spectrum of partners to standard model particles
 - Their spins are different by $\frac{1}{2}$ unit
- Predicts 5 Higgs bosons, the lightest very similar to that in Standard Model
- Requires observation of new predicted particles and phenomenology

WHERE ARE SUSY PARTICLES?

- Many SUSY particles have already been observed —leptons, quarks, W, and Z —same particles included in SM
- But no SUSY partner of SM observed yet!
- If SUSY is an exact symmetry, we should have seen SUSY partners of known particles with the same mass
- SUSY is certainly broken!
- Spontaneous SUSY breaking must be added by hand and still avoid divergences in Higgs mass corrections
- Different symmetry breaking mechanisms on the market

NEW SYMMETRY: R-PARITY

$$R = (-1)^{3(B-L)+2S}$$

- Add new conservation law to protect against lepton and baryon number violation
- R-parity combines spin, baryon, and lepton quantum numbers
 –particles: R = +1
 - -SUSY particles: R = -I
- Important phenomenological consequences
 - -SUSY particles can only be produces in pairs
 - -R = -I particles must always decay in final states with at least one R = -I particle

Ightest SUSY particle (LSP) must be stable

- -Two R = -I particles can annihilate and produce ONLY R = +I particles
 - ▶ important for Dark Matter searches

LIGHTEST SUPERSYMMETRIC PARTICLES

- Two particles play crucial role in SUSY searched
- Lightest supersymmetric particle must be stable and hence escape detection
 - -missing energy in SUSY processes
 - -SUSY masses are expected to be large therefore expect large missing energy
- Next to lightest supersymmetric particle (NLSP)
 - -Because of R-parity conservation must always decay to LSP
 - + two body decay of NLSP \rightarrow X + LSP
 - -X will always be an ordinary R = +1 particle
 - -distinctive kinematic signature for X helps searching for NLSP

SUSY SPECTRUM

- Lightest supersymmetric particle (LSP) stable and escapes detection

 missing energy in SUSY processes
- Next to lightest supersymmetric particle (NLSP)
 - R-parity conservation: NLSP \rightarrow X + LSP
 - Potentially long proper lifetime

 $R = (-1)^{3(B-L)+2S}$

SUSY PRODUCTION VIA QCD

 QCD production dominates but given heavy mass for SUSY, cross section strongly depends on squark and gluino masses

SUSY PRODUCTION VIA ELECTROWEAK

 Smaller cross section since EW coupling is smaller compared to QCD

SUSY vs. Standard Model

SUSY PHENOMENOLOGY

SUSY PHENOMENOLOGY

SIMPLIFIED MODELS (SMS)

- Very productive industry of SUSY flavors and models

 early results at 7 TeV have flourished new ideas
- Simulating each and every model across parameter space not feasible (and perhaps not reasonable)
- Luckily, final experimental signature in common between many models
- Define search strategy to maximize coverage of distinct experimental final states

SIGNATURE-BASED SEARCH STRATEGY

- Not relay on your favorite theorist to define signatures
 - -Variety of creative models sometimes with very specific predictions
 - -Fine tuning of search potentially counterproductive
- Experimental approach: final states predicted by differend different corners of parameter space
 - -MET + I jet
 - -MET + > I jet
 - -MET + I lepton
 - -MET + 2 lepton
 - same sign
 - opposite sign
 - -MET + multi-leptons
 - MET + high pt photon

• Model-independent strategy to constrain classes of m

 $m_{\tilde{\chi}^{\pm}} = m_{\tilde{\chi}^{0}}$ [Ge

SUSY SIGNATURES

Imperial College

INTERPRETATION OF SMS

INTERPRETATION OF SUSY SEARCHES

THE interpretation tool for SUSY searches @ LHC

Pros

•

- closely related to exp. observables
 - understand features
- limited number of parameters
 - results as 2D scans
- "easy" reinterpretation (cross-section limit)

Cons

- no complete model
 - consistency, higher-order corrections?
 - application to other (full) models
 - ignores details of production, spin structure, ...

Shahram Rahatlou, Roma Sapienza & INFN

CONSTRAINTS ON STOP

BENEFITS OF HIGHER ENERGY

1000

Higgs: pp \rightarrow H, H \rightarrow WW, ZZ and $\gamma\gamma$ mainly gg: factor \sim 2

SUSY – 3rd Generation: Mass scale ~ 500 GeV qq and gg: factor ~3 to 6

SUSY – Squarks/Gluino: Mass scale ~ 1.5 TeV qq,gg,qg: factor ~40 to 80

Z': Mass scale ~ 5 TeV qq: factor ~1000

Increase in energy will help a lot! Not just for SUSY...

IMPORTANCE OF INCREASE IN ENERGY

134

WHAT HAVE WE LEARNED?

WHAT HAVE WE LEARNED?

- Largest scientific machine ever built performed beyond expectations
 - -First particle discovered in 20 years
- First ever spin-0 elementary particle
- Investigations so far support Standard Model predictions

 but do not exclude yet new theories at higher energy
- Relatively small mass of new boson leaves theoretical puzzles to be addressed
 - Physics at electroweak scale (100 GeV) regulated at Planck scale (10¹⁹ GeV)
OUTLOOK

OUTLOOK

- Extensive search program just starting to probe new territories beyond Standard Model

 Only most basic and simplistic theories probed at this point.
- New gauge bosons excluded up to ~4 TeV of mass
- New fermions excluded up to ~0.7 TeV of mass
- But these searches assume strong coupling

OUTLOOK

- Extensive search program just starting to probe new territories beyond Standard Model

 Only most basic and simplistic theories probed at this point.
- New gauge bosons excluded up to ~4 TeV of mass
- New fermions excluded up to ~0.7 TeV of mass
- But these searches assume strong coupling
- Probability of producing new particles increased up to 50 times wrt Run I
- Exploration of a new territory just begun

also New Exotic Particles

- Next two years critical for future of searches
 - Happy Ending: New particles discovered
 - if mass not too large, accumulate data with high-luminosity LHC to study properties and define next step
 - ▶ if heavy, aim at upgrade of energy

- Next two years critical for future of searches
 - Happy Ending: New particles discovered
 - if mass not too large, accumulate data with high-luminosity LHC to study properties and define next step
 - ▶ if heavy, aim at upgrade of energy
 - No particles found
 - Indirect search through Higgs couplings becomes critical
 - Maybe new particles weakly coupled to known particles
 - Use high-luminosity LHC to probe weakly coupled scenario

- Next two years critical for future of searches
 - Happy Ending: New particles discovered
 - if mass not too large, accumulate data with high-luminosity LHC to study properties and define next step
 - ▶ if heavy, aim at upgrade of energy
 - No particles found
 - Indirect search through Higgs couplings becomes critical
 - Maybe new particles weakly coupled to known particles
 - Use high-luminosity LHC to probe weakly coupled scenario
- Dark Matter
 - Potential of search at LHC highly dependent on center-of-mass energy
 - Does not require very large data samples
 - Several direct detection experiments underway for large mass candidates
 - Xenon IT just started. DarkSide (Liquid Argon) 20k underway
 - Interesting and model-independent claim at low mass deserves verification by new experiments

