The Standard Model and (some of) its extensions

R. Barbieri Zuoz, August 14-20, 2016

- I. The SM and its status, as of 2016
- II. Problems of (questions for) the SM
- III. Mirror Twin Higgs World
- IV. Anomalies in B-decays
- V. Axion searches by way of their coupling to the spin

The Mirror Twin Higgs World

The hierarchy problem, once again

$$
\delta m_h^2 = \frac{3y_t^2}{4\pi^2} \Lambda_t^2 - \frac{9g^2}{32\pi^2} \Lambda_g^2 - \frac{3g^2}{32\pi^2} \Lambda_{g'}^2 + \dots
$$
\n
$$
\underbrace{\qquad \qquad }_{\Lambda_t \lesssim 0.4\sqrt{\Delta} \ TeV} + \underbrace{\qquad \qquad }_{\Lambda_g \lesssim 1.1\sqrt{\Delta} \ TeV} + \underbrace{\sum_{\lambda} \sum_{\lambda} w_{\lambda} z}_{1/\Delta \ TeV} \quad \Lambda_{g'} \lesssim 3.7\sqrt{\Delta} \ TeV
$$
\n
$$
\frac{1}{\Delta} = \text{amount of tuning}
$$

 \Rightarrow Look for a top "partner" (coloured, S=0 or 1/2) with a mass not far from 1 TeV

The Mirror World

Lee, Yang 1956 Kobzarev, Okun, Pomeranchuk 1966 Berezhiani 2006 and ref.s therein

Can one restore parity?

Introduce:

 $SU_{321}:(A_{\mu}^a,H,f_L,f_R)$ *SU*¹₃₂₁ : $(A_{\mu}^{a\prime},H',f'_L,f'_R)$ and require that $\mathcal{L}_{SM} + \mathcal{L}_{SM}'$ be invariant under $(\vec{x}, t) \rightarrow (-\vec{x}, t)$ $f_L \leftrightarrow \gamma_0 (f'_L)^c$, $f_R \leftrightarrow \gamma_0 (f'_R)^c$ $H \leftrightarrow H', \quad A^a_\mu \leftrightarrow A^{a\prime}_{\tilde{\mu}}$ Need: $[$ *f*_L $\leftrightarrow \gamma_0$ *f*_R $]$

$$
m_H = m_{H'}, \quad \lambda = \lambda', \quad g_{3,2,1} = g'_{3,2,1}, \quad Y = Y'^*
$$

The Twin Higgs

Chacko, Goh, Harnik 2005

Consider the most general

$$
\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}'_{SM} + \sigma |H|^2 |H'|^2 + \epsilon B_{\mu\nu} B'_{\mu\nu}
$$

\n
$$
\Rightarrow V(H, H') = m^2 (|H|^2 + |H'|^2) + \lambda (|H|^4 + |H'|^4) + \sigma |H|^2 |H'|^2
$$

\nThe mass term is $SO(8)$ -symmetric

What if the quartic were also $SO(8)$ -symmetric? $\sigma = 2\lambda$ \Rightarrow $V(H,H') \rightarrow V(H), \quad |\mathcal{H}|^2 = |H|^2 + |H'|$ 2 $V(H) : SO(4) \to SO(3)$ *at* $v^2 =$ m^2 $\frac{C}{2\lambda} \Rightarrow 3 \ PGBs, \ SU(2) \times U(1) \rightarrow U(1)_{em}$ $V(\mathcal{H}): SO(8) \rightarrow SO(7)$ at $v'^2 =$ m^2 $\frac{C}{2\lambda} \Rightarrow 7 \; PGBs, \; SU(2)' \times U(1)' \rightarrow U(1)'_{em}$ $+$ $SU(2) \times U(1)$ unbroken and 1 massless Higgs doublet

(remember that $SO(8) \supset SO(4) \times SO(4)$ ')

The Mirror Twin Higgs World

The mirror world with a maximally symmetric Higgs system

$$
\mathcal{L} = \mathcal{L}_{gauge} + \mathcal{L}'_{gauge} + \mathcal{L}'_Y + \mathcal{L}'_Y + V(H, H')
$$

$$
V(H, H') = V_{SO(8)-inv} + V_{Z_2-inv} + V_{Z_2-broken}
$$

$$
V_{Z_2-inv} = \delta \lambda (|H|^4 + |H'|^4) \qquad V_{Z_2-broken} = \delta m^2 |H|^2
$$

Minimizing the potential for $\delta \lambda << \lambda$, $\delta m^2 << m^2$

$$
v'^{2} = \langle H' \rangle^{2} = -\frac{m^{2}}{2\lambda} \qquad v^{2} = \langle H \rangle^{2} = \frac{v'^{2}}{2}(1 - \frac{\delta m^{2}}{2\delta\lambda v'^{2}})
$$

$$
m_{\tilde{h}'}^{2} = 4\lambda v'^{2} \qquad m_{\tilde{h}}^{2} = 8\delta\lambda v^{2}
$$

$$
\tilde{h}' = s_{\theta}h + c_{\theta}h' \qquad \qquad \tilde{h} = c_{\theta}h - s_{\theta}h' \qquad \qquad \tan \theta = \frac{v}{\sqrt{2}}
$$

 η'

what does one gain?

Fine tuning in the MTHW

$$
v'^2 = ^2 = -\frac{m^2}{2\lambda} \qquad v^2 = ^2 = \frac{v'^2}{2}(1-\frac{\delta m^2}{2\delta\lambda v'^2})
$$

need to fine tune v' (or $m_{h'}$) and v/v'

$$
\Delta_{m_h^T H} = \Delta_{m_h'} \Delta_{v/v'}
$$
 (if both Δ 's > 1)

$$
\Delta_{m_{h'}} = \frac{3}{4\pi^2} \frac{y_t^2 \Lambda_{TH}^2}{m_{h'}^2} \qquad \Delta_{v/v'} = \frac{d \log v^2}{d \log \delta m^2} \approx \frac{1}{2} \frac{v'^2}{v^2}
$$

how does one compare it with the SM?

$$
\Delta_{m_h^{SM}} = \frac{3}{4\pi^2} \frac{y_t^2 \Lambda_{SM}^2}{(m_h^{SM})^2} \qquad \frac{\Delta_{m_h^{TH}}}{\Delta_{m_h^{SM}}} = \frac{1}{2} \frac{\lambda_{SM}}{\lambda_{TH}} \frac{\Lambda_{TH}^2}{\Lambda_{SM}^2}
$$

A considerable gain for $\lambda_{TH} \gtrsim 1 >> \lambda_{SM} \approx 0.1$

The MTHW spectrum

production and decays *h* \tilde{h}'

via a top loop $\sigma(pp\to \tilde h')\approx 0$ \overline{v} $\frac{\partial}{\partial v'}$ ² $\sigma(pp \to h_{SM}(m = m_{h'}))$

Neglecting phase space, relative to $\ \Gamma(\tilde{h}^{\prime}% ,\tilde{h}^{\prime})$ $\rightarrow ZZ)$ $\left|\Gamma(\tilde{h}' \to f) \right|$ 2 | 1 | 2 | 1 $f \sim |WW|hh|W'W'|Z'Z'$

Open problems(/signals?)

1. Where does the breaking of Z_2 -parity come from?

$$
V_{Z_2-broken} = \delta m^2 |H|^2
$$

2. Dark/mirror Radiation

$$
\gamma', \nu' \qquad \Rightarrow \Delta N_{eff}
$$

3. Dark/mirror Matter

B', L', Q' conserved

Anomalies in B-decays

Back to the beginning

A suitable flavour program can reduce errors on CKM tests from about 20% (now, similar to $\delta\epsilon_i/\epsilon_i^{SM})$ *i* to $\leq 1\%$

Which direction to take?

 $i = 1,...,5$ = different Lorentz structures

2. Indirect signals of new physics at the TeV scale

A deviation from the SM in flavour, finally?

$$
R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(\to D^* l \nu)} \qquad l = \mu, e
$$

A deviation from the SM in flavour, finally?

$$
R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(\to D^* l \nu)}
$$

Vagnoni 2016

a 4σ deviation from the SM from a collection of different experiments

B-physics "anomalies"

 $b \rightarrow c\tau\nu$ 1. $R_{D^*}^{\tau/\ell} = \frac{\mathcal{B}(B \to D^* \tau \nu)_{\text{exp}}/\mathcal{B}(B \to D^* \tau \nu)_{\text{SM}}}{\mathcal{B}(B \to D^* \ell \nu)_{\text{exp}}/\mathcal{B}(B \to D^* \ell \nu)_{\text{SM}}} = 1.28 \pm 0.08$ $R_D^{\tau/\ell} = \frac{\mathcal{B}(B \to D\tau\nu)_{\rm exp}/\mathcal{B}(B \to D\tau\nu)_{\rm SM}}{\mathcal{B}(B \to D\ell\nu)_{\rm exp}/\mathcal{B}(B \to D\ell\nu)_{\rm SM}} = 1.37 \pm 0.18,$ $b \rightarrow s l^+ l$ 2. $b \rightarrow s l^+ l^-$

 $R_K^{\mu/e} = \frac{\mathcal{B}(B \to K \mu^+ \mu^-)_{\rm exp}}{\mathcal{B}(B \to K e^+ e^-)_{\rm exp}}\bigg|_{a^2 \in [1,6]\rm{GeV}} = 0.745^{+0.090}_{-0.074} \pm 0.036$ (could be related to the P_5^\prime anomaly in the q^2 distribution)

Both a $20 \div 30\%$ deviation from the SM However tree (1) versus loop level (2)!

Minimal Flavour Violation in the quark sector

Phenomenological Definition:

 In EFT the only relevant op.s correspond to the FCNC loops of the SM, weighted by a single scale Λ and by the standard CKM factors (up to $O(1)$ coeff.s)

 $A(d_i \rightarrow d_j) = V_{tj}V_{ti}^* A_{SM}^{\Delta F=1}(1 + a_1)$ $4\pi M_W$ $\frac{N}{\Lambda})^2)$ $M_{ij} = (V_{tj}V_{ti}^*)^2 A_{SM}^{\Delta F=2} (1 + a_2)$ $4\pi M_W$ $\frac{N}{\Lambda})^2)$ Strong MFV $U(3)_Q \times U(3)_u \times U(3)_d$ $Y_u = (3, \bar{3}, 1) \rightarrow Y_u^D$ $Y_d = (3, 1, \bar{3}) \rightarrow V Y_d^D$ \Rightarrow Chivukula, Georgi 1987 Hall, Randall 1990 D'Ambrosio et al 2002

Weak MFV $U(2)_Q \times U(2)_u \times U(2)_d \times U(1)_{d3}$ $y_b = (1, 1, 1)_{-1}$ $\lambda_u = (2, 2, 1)_0$ $\lambda_d = (2, 1, 2)_0$ $V_Q = (2, 1, 1)_0$

1. gives a symmetry status to heavy and weakly mixed top 2. allows observables deviations from the SM by nearby BSM

$$
\Rightarrow Y_u = \left(\frac{\lambda_u}{0} \cdot \frac{y_t x_t}{y_t}\right) \qquad Y_d = \left(\frac{\lambda_d}{0} \cdot \frac{y_b x_b}{y_b}\right) \qquad V = \begin{pmatrix} 0 \\ \epsilon \end{pmatrix}
$$

mimicked in the lepton sector by: $U(2)_L \times U(2)_e \times U(1)_{e3}$

$$
y_{\tau} = (1, 1)_{-1} \quad \lambda_e = (2, \bar{2})_0 \quad \mathbf{V_L} = (2, 1)_0
$$

(except for neutrinos, due to $N_R^T M N_R$)

B, Isidori, Jones-Perez, Lodone, Straub 2011 B, Buttazzo, Sala, Straub 2012

Question

Is there a flavour group G_F and a tree level exchange Φ such that:

generation of quarks and leptons only; 1. With unbroken \mathcal{G}_F , Φ couples to the third

2. After small \mathcal{G}_F breaking, the needed operators are generated

 $(\bar{c}_L \gamma_\mu b_L)(\bar{\tau}_L \gamma_\mu \nu_L)$

 $(b_L \gamma_\mu s_L)(\bar{\mu} \gamma_\mu \mu)$ at suppressed level

Answer

$$
\mathcal{G}_F = \mathcal{G}_F^q \times \mathcal{G}_F^l \qquad \text{"minimally" broken}
$$
\n
$$
\mathcal{G}_F^q = U(2)_Q \times U(2)_u \times U(2)_d \times U(1)_{d3}
$$
\n
$$
\mathcal{G}_F^l = U(2)_L \times U(2)_e \times U(1)_{e3}
$$

with mediators:

Lorentz scalar, \mathcal{G}_F singlet 1. $V_\mu = (3,1)_{2/3}$ Lorentz vector, \mathcal{G}_F singlet *Lorentz vector,* \mathcal{G}_F *singlet* **3.** $\Phi = (3, 3)_{-1/3}$ **2.** $V_{\mu} = (3,3)_{2/3}$

(unique, if I were a mathematician)

Couplings in the physical bases

$$
\mathcal{L}_1 = g_U (\bar{u}_L \gamma^\mu F^U \nu_L + \bar{d}_L \gamma^\mu F^D e_L) U_\mu + \text{h.c}
$$

and similar for $\mathcal{L}_{2,3}$

$$
F^{U} = \begin{pmatrix} V_{ub}(s_l \epsilon_l) A_u & V_{ub}(c_l \epsilon_l) A_u & V_{ub}(1-a)r_u \\ V_{cb}(s_l \epsilon_l) A_u & V_{cb}(c_l \epsilon_l) A_u & V_{cb}(1-a)r_u \\ V_{tb}(s_l \epsilon_l)(b-1) & V_{tb}(c_l \epsilon_l)(b-1) & V_{tb} \end{pmatrix}
$$

 $F^D =$ $\sqrt{ }$ $\overline{ }$ $V_{td}(s_l\epsilon_l)A_d$ $V_{td}(c_l\epsilon_l)A_d$ $V_{td}[1-(1-a)r_u]$ $V_{ts}(s_l\epsilon_l)A_d$ $V_{ts}(c_l\epsilon_l)A_d$ $V_{ts}[1-(1-a)r_u]$ $V_{tb}(s_l \epsilon_l)(b-1)$ $V_{tb}(c_l \epsilon_l)(b-1)$ V_{tb} \setminus $\overline{}$

in terms of ϵ_l , θ_l and 4 O(1) coefficients

Tree level effects

In terms of
$$
(R_U, R_{\vec{U}}, R_{\vec{S}}) = \frac{4M_W^2}{g^2} \left(\frac{g_U^2}{M_U^2}, \frac{g_{\vec{U}}^2}{M_{\vec{U}}^2}, \frac{g_{\vec{S}}^2}{M_{\vec{S}}^2}\right)
$$

$$
b \to c\tau\nu
$$

$$
R_{D^{(*)}}^{\tau/l} \approx 1 + (R_U, -\frac{1}{4}R_{\vec{U}}, -\frac{1}{8}R_{\vec{S}})r_u(1-a)
$$

 $b \rightarrow s \nu \bar{\nu}$

$$
R_{K^{(*)}\nu} = \frac{\mathcal{B}(\bar{B} \to K^{(*)}\nu\bar{\nu})}{\mathcal{B}(\bar{B} \to K^{(*)}\nu\bar{\nu})_{SM}} \approx \frac{1}{3} \left(3 + 2\text{Re}(x) + |x|^2\right)
$$

$$
(x_U, x_{\vec{U}}, x_{\vec{S}}) = -\frac{\pi}{\alpha c_{\nu}^{SM}} [1 - r_u(1 - a)] \left(0, -\frac{R_{\vec{U}}}{2}, \frac{R_{\vec{S}}}{8}\right)
$$

 \Rightarrow Only U_μ survives tree level test (trivially)

B, Isidori, Pattori, Senia 2015

Consistency with data (and expected signals) 1

EWPT: No S,T,U \Rightarrow mild bound on k_Y

 $Z \rightarrow \tau \bar{\tau} (b\bar{b}) \Rightarrow k_Y \lesssim 3 \cdot 10^{-2} g_U^2$ \int_U/gg'

 $b \rightarrow c\tau\nu$ and correlated processes

The phenomenological model passes the tests but cries out for a UV completion

A sketch

Composite fermions in $\Psi = (4, 2, 2)_{1/2} \oplus (4, 2, 2)_{-1/2} \oplus (4, 1, 1)_{1/2} \oplus (4, 1, 1)_{1/2}$ A strong sector with a global $SU(4) \times SO(5)$ \Rightarrow Composite vectors in adjoint of $SU(4) \times SO(4)$ \int in $SU(4): G_{\mu} + X_{\mu} + U_{\mu} + U_{\mu}^{+}$

$$
\begin{aligned}\n\mathbf{If} \quad & M_{V_i} \approx g^* f \quad \text{then} \\
& g_U \lesssim g^* \qquad R_U \lesssim (v/f)^2\n\end{aligned}
$$

B, Murphy, Senia, to appear

Phenomenology

1. Leptoquark pair production 2. Exotic Leptons 3. Resonances in $\tau^+\tau^-$ Since $Y = \sqrt{\frac{2}{3}}T_4^{15} + T_R^3 + X$ expect 3 neutral composite vectors

Conclusion

Let us see if the anomalies get reinforced or fade away

e.g. from the LHCb program

- not only R_{K} (B \rightarrow Ke⁺e⁻/B \rightarrow Kµ⁺µ⁻) but similar ratios with different hadronic systems $(K^*, \varphi, \Lambda, \text{etc.})$
- *–* not only D*τν, but also Dτν, D_ετν, Λ_ετν, etc.
	- also trying hadronic tau decays

If they are roses ...

take seriously the leptoquark and $U(2)^5$ and perhaps a composite picture

An "Extreme Flavour" experiment?

Vagnoni - SNS, 7-10 Dec 2014

- Currently planned experiments at the HL-LHC will only exploit a small fraction of the huge rate of heavyflavoured hadrons produced
	- ATLAS/CMS: full LHC integrated luminosity of 3000 fb⁻¹, but limited efficiency due to lepton high p_T requirements
	- LHCb: high efficiency, also on charm events and hadronic final states, but limited in luminosity, 50 fb⁻¹ vs 3000 fb⁻¹
- Would an experiment capable of exploiting the full HL-LHC luminosity for flavour physics be conceivable?
	- $-$ Aiming at collecting $O(100)$ times the LHCb upgrade luminosity \rightarrow 10¹⁴ b and 10¹⁵ c hadrons in acceptance at L=10³⁵ cm⁻²s⁻¹

from $= 20\%$ to $\le 1\%$ Motivation: test CKM (FCNC loops)

A minimal list of key observables in QFV to be improved and not yet TH-error dominated

- $\ \gamma$ from tree: $B\to DK$, etc (now better from loops)
- $|V_{ub}|, |V_{cb}|$

$$
- \quad |v_{ub}|, |v_{cb}|
$$

$$
- \quad B \rightarrow \tau \nu, \mu \nu \ (+D^{(*)}) \quad \mathcal{L}
$$

- $B \to K^{(*)}$ $l^+l^-, \nu\nu$ (in suitable observables?)
- $K_S, D, B_{s,d} \rightarrow l^+l^-$ ("Higgs penguins")
- $\phi_{d,s}^{\Delta}$ (CPV in $\Delta B_{d,s}=2$)
- K^+ , $K_L \rightarrow \pi \nu \nu$
- $\,\Delta A_{CP}\,$ in selected D modes