PAUL SCHERRER INSTITUT

Manuel A. Pouchon :: Laboratory Head :: Paul Scherrer Institut

LNM: Labor für Nukleare Materialien

NES Information Event, 18.10.2016

\circ Introduction

- LNM Mission
- Background / Aspects of Nuclear Materials
- \rightarrow Research Programs in LNM

o Examples from Research Programs

- RPV / Internals (INTEGER)
 - TMF crack initiation and growth in piping
- Cladding & Fuel (Nuclear Fuels)
 - Hydrides
 - Restructuring
- Advanced Systems (Advanced Nuclear Materials)
 - Embrittlement in Spallation Source
 - In-Situ Creep Metals / Ceramics

\circ Introduction

- LNM Mission
- Background / Aspects of Nuclear Materials
- \rightarrow Research Programs in LNM

$\circ~$ Examples from Research Programs

- RPV / Internals (INTEGER)
 - TMF crack initiation and growth in piping
- Cladding & Fuel (Nuclear Fuels)
 - Hydrides
 - Restructuring
- Advanced Systems (Advanced Nuclear Materials)
 - Embrittlement in Spallation Source
 - In-Situ Creep Metals / Ceramics

Mission of LNM

• CENTRE OF EXCELLENCE:

The LNM is the principal research unit and national centre of excellence in Switzerland in the domains of (irradiated) **materials behaviour** and **ageing** in **nuclear installations**.

ACADEMIC R&D & SCIENTIFIC SERVICE

It provides material-related academic R&D contributions and scientific services to the **sustainability** of **current** and **future nuclear installations** for electricity & heat generation or waste reduction as well as to the performance of **nuclear research facilities**. A special emphasis is placed to the **safety & safe long-term operation** of the CH NPPs.

- Material ageing in the primary circuit and its impact on integrity, safety & lifetime
- Performance and safety of LWR core materials in service and storage
- **Radiation damage** in structural and core/target materials of advanced nuclear and accelerator systems.
- Material irradiation program at SINQ in co-operation with the Spallation Neutron Source Division.

Post-irradiation examinations and **failure analysis** in close cooperation with the Hotlab Division AHL.

KNOWLEDGE MANAGEMENT:

LNM is engaged in academic **teaching** and **education** as well as in **knowledge transfer** in its activity fields contributing to the education of the future nuclear specialists and preservation of expertise & excellence.

• INDEPENDENT EXPETISE:

Its **independent expertise** and **excellence** are always available to the **Swiss safety authority**, e.g. for expertise's and consulting (TSO), and for the **industry**, e.g., for material examinations and failure analysis.

STATE OF THE ART INFRASTRUCTURE:

It operates a state-of-the-art lab & computing infrastructure and modelling tools for the characterization of (radioactive) materials (strongly benefiting from PSI's unique large scale facilities: hotlab, SLS, SINQ, SwissFEL) and for the analysis & prediction of the material behavior, integrity, safety & lifetime.

M.A. Pouchon, NES Information Event, 18.10.2016, Page 6 / 24

\circ Introduction

- LNM Mission
- Background / Aspects of Nuclear Materials
- \rightarrow Research Programs in LNM

o Examples from Research Programs

- RPV / Internals (INTEGER)
 - TMF crack initiation and growth in piping
- Cladding & Fuel (Nuclear Fuels)
 - Hydrides
 - Restructuring
- Advanced Systems (Advanced Nuclear Materials)
 - Embrittlement in Spallation Source
 - In-Situ Creep Metals / Ceramics

TMF: PLiM-V & VI (swissnculear, 2014-18)

Modeling & Lifetime Prediction of TMF Initiation & Growth under Turbulent Mixing Conditions in T-Joints & Experimental Validation

CFD Modeling & Validation (by LTH)

tarmoorub tarmoorub teennsed water inlet

Structural Mechanics Modeling & Validation

meso-scale

Non-Standard Fatigue Tests for Model Validation & Development

TMF with biaxial pre-loading

HCF with micro notch (FIB)

- Crack arrest at 2 to 2.5 mm = f (frequency)
- Strong effect of surface conditions on initiation

Multiaxial HCF tension-torsion, proportional & non-proportional

M.A. Pouchon, NES Information Event, 18.10.2016, Page 10 / 24

multiaxial non-proportional loading!

Crack Network Formation due to Cyclic Thermal Shocks

Crack network formation due to cyclic thermal shocks (Δ T=160 °C, 1Hz, H₂O)

0 cycles

1050 kc

1950 kc 2450 Crack network at different depths 3000 kc

3300 kc

Lifetime Assessment of Mixing T-Joint in KKM Load Case 1

M.A. Pouchon, NES Information Event, 18.10.2016, Page 12 / 24

\circ Introduction

- LNM Mission
- Background / Aspects of Nuclear Materials
- \rightarrow Research Programs in LNM

$\circ~$ Examples from Research Programs

- RPV / Internals (INTEGER)
 - TMF crack initiation and growth in piping
- Cladding & Fuel (Nuclear Fuels)
 - Hydrides
 - Restructuring
- Advanced Systems (Advanced Nuclear Materials)
 - Embrittlement in Spallation Source
 - In-Situ Creep Metals / Ceramics

Hydrides in Cladding (Zircaloy)

Hydrogen in the external liner:

- hydrogen content in the liner varies with stress state;
- thorough inspection / relative quantitative estimation of hydrogen in the external liner will be necessary.

Hydrides re-orientation KKG

Zry-4 duplex DX-D4, AREVA, KKG BU 72 GW d t⁻¹

Nuclear Fuel: XRD & EXAFS

High burn-up fuel & restructuring

At 9 cycles:

- quasi-full Debye rings (powder-like)
- very fine grains (< 1-2 μm) in whole sample

On-going analyses 5 and 7 cycles:

- polygonisation has started
- stresses?

\circ Introduction

- LNM Mission
- Background / Aspects of Nuclear Materials
- \rightarrow Research Programs in LNM

o Examples from Research Programs

- RPV / Internals (INTEGER)
 - TMF crack initiation and growth in piping
- Cladding & Fuel (Nuclear Fuels)
 - Hydrides
 - Restructuring
- Advanced Systems (Advanced Nuclear Materials)
 - Embrittlement in Spallation Source
 - In-Situ Creep Metals / Ceramics

STIP program – Materials in Spallation Target

M.A. Pouchon, NES Information Event, 18.10.2016, Page 19 / 24

Progress on Irradiation creep of SiC_f composites

supported by French national program "Needs"

Aperture size: 12X4.5 mm² Beam current 5.6 µA

Uniaxial loading system for mini SiCf (0.5 mm in diameter) composites sample is successfully developed.

Accident Tolerant Cladding - Conductivity

Three blocks

- TC measurements on actual cladding tubes
 - Carried out on samples obtained through MatISSE and industry partners
- **Microstructure** study with EM
 - ➤ TEM → structure
 - ➢ EFTEM → effect of irradiation
 - \succ FIB → samples and tomography

Modelling

link observations to measurements in a continuous medium based model

Loïc Fave - EPFL Thesis № 7378 (2016)

Wir schaffen Wissen – heute für morgen

Nuclear Materials Research at PSI is active...

... serving the authorities and industry with safety investigations.

... helping the industry with performance optimizations.... contributing to education and training.

... contributing to the next generation research.

Wir schaffen Wissen – heute für morgen

My thanks go to

- All the members of LNM for their great efforts & performance
- AHL / SU / NES / NUM
- All external partners like ENSI, swissnuclear, CCEM, SNF, ...

