

Prof. Dr. Andreas Türler :: Laborleiter LRC :: Paul Scherrer Institut

Labor für Radiochemie (LRC)

NES präsentiert: Kompetenzen und Highlights

LABOR FÜR RADIOCHEMIE DES PAUL SCHERRER INSTITUTS UND DER UNIVERSITÄT BERN 31.12.2016

Graduate student
Master student
Position of CRS

Das Periodensystem

Synthese und Nachweis eines Seaborgium Carbonyl Komplexes

Science **345**, 1491 (2014); DOI: 10.1126/science.1255720

Mainz – GSI – PSI – Bern – Berkeley – Tokai – Riken – Lanzhou collab.

Mainz – GSI – PSI – Bern – Berkeley – Tokai – Riken – Lanzhou collaboration @ GARIS RIKEN (Japan)

H. Haba et al., Phys. Rev. C85, 024611 (2012)

 $u^{\scriptscriptstyle \flat}$

UNIVERSITÄT

Radiochemische Analyse exotischer, langlebiger und sicherheitsrelevanter Radionuklide

- Bestimmung relevanter Radionuklide für den sicheren Betrieb, die Entsorgung und Endlagerung von Komponenten nuklearer Anlagen
- R&D zur Gewinnung nuklearer Daten für das Design und den Betrieb von «accelerator driven systems» (ADS) und Spallationsneutronenquellen
- Für das PSI: Bestimmung des Radionuklidinventars von
 - SINQ Komponenten und Konstruktionsmaterialien
 - SINQ Target
 - Zement
 - Target E
 - MEGAPIE LBE

Relevanz der Radionuklide basierend auf: Zerfallsart, Halbwertszeit, totale Aktivität, chemische und physikalische Eigenschaften. Beispiele: ²⁰⁸⁻²¹⁰Po, ¹⁹⁴Hg, ⁶⁰Co, ³⁶Cl, ¹⁴⁸Gd und andere Lanthaniden

ERAWAST – Exotic Radionuclides from Accelerator Waste for Science and Technology

Neubestimmung der Halbwertszeit von ⁶⁰Fe (r-Process Nucleus!)

 $u^{\scriptscriptstyle \flat}$

6 UNIVERSITĂ

> Eine ⁶⁰Fe Probe wurde chemisch aus einem Cu-Strahlstopp des Ringbeschleunigers extrahiert, gammaspektrometrisch vermessen an der TU München und massenspektrometrisch am PSI Hotlabor (AHL/NES) bestimmt.

Resultat: ⁶⁰Fe zerfällt wesentlich langsamer als früher bestimmt!

Referenz Halbwertszeit

Neue Halbwertszeit

(1.49 ± 0.27) x 10⁶ y *Kutschera et al, 1984*

(2.62 ± 0.04) x 10⁶ y Korschinek et al, Phys. Rev. Lett., 2009

Impact: Kosmische Prozesse müssen neu bewertet werden! (http://www.spiegel.de/wissenschaft/weltall/0,1518,645644,00.html)

Diagnostische Radionuklide

Therapeutische Radionuklide

Biochemische Vorgänge sichtbar machen möglichst ohne störende Prozesse Beeinflussung biochemischer Vorgänge möglichst ohne Nebenwirkungen

Radiopharmazeutika: Paradebeispiel für «Theragnostics»

Beispiele für geeignete theragnostische Paare

PET Nuclide	1 % β⁺	2 <e<sub>β+></e<sub>	3 E _{γ,} I _γ	4 T _{1/2}	5 Prod.	6 Pharm.	7 Pair?
¹⁸ F	96.7 %	249.8 keV	\checkmark	1.83.h	\checkmark	\checkmark	×
⁴³ Sc	88.1 %	476.0 keV	373 keV 23%	3 .89 h	\checkmark	\checkmark	47Sc
⁴⁴ Sc	94.3 %	632.0 keV	X 1157 keV 100%	3.97 h	\checkmark	\checkmark	47Sc
⁴⁵ Ti	84.8 %	438.9 keV	\checkmark	3.08 h	\checkmark	×	×
⁵² Mn	* 29.6 %	242.0 keV	* 1434 keV 100%	5 .59 d	\checkmark	×	×
⁶⁴ Cu	* 17.6 %	278.2 keV	\checkmark	12.7 h	\checkmark	\checkmark	67Cu
⁶⁸ Ga	88.9 %	829.5 keV	1077 keV 3%	* 68 m	×	\checkmark	67Ga
⁸⁶ Y	* 31.9%	660.0 keV	X 1077 keV 83%	14.7 h	\checkmark	\checkmark	90γ
⁸⁹ Zr	* 22.7%	396.0 keV	X 909 keV 99%	7 8.4 h	\checkmark	\checkmark	×

van der Meulen et al., Nucl. Med. Biol. 42: 745 (2015)

⁴⁴Sc PET/CT Bild eines Patienten

THERANOSTICS Center for Molecular Radiotherapy – Zentralklinik Bad Berka, Prof. R. Baum

⁴⁴Sc wurde am PSI produziert und > 500 km nach Bad Berka geschickt

PET/CT Bild eines Patienten 60 min. p.i. mit ⁴⁴Sc-DOTATOC

Fossile und nicht-fossile Quellen kohlenstoffhaltiger Aerosole

- > Primärer OC&EC: Direkte Aerosolemission
- > Sekundärer OC: Bildung von Aerosolen durch Oxidation von VOCs

BAFU, 2005

Gehr/SNF, 2006

¹⁴C Analytik mit Beschleuniger-Massenspektroskopie (AMS)

- Separation von ¹⁴C von ¹⁴N und ¹³CH / ¹²CH₂
- Bestimmung von 1-1000 μgC mit ¹⁴C/¹²C von 10⁻¹⁵-10⁻¹² (μBq Bereich)

Anwendung für NES: Bestimmung von ¹⁴C in Reaktorstahl (E. Wieland/S. Szidat)

Wir schaffen Wissen – heute für morgen

Die Rolle der Radiochemie in der Grundlagen- und angewandten Forschung: ... die Radiochemie kann zu einer Reihe von Themen innerhalb NES signifikante Beiträge liefern ... das LRC verfolgt mehrere Kooperationen mit anderen Labors innerhalb NES ... am LRC sprechen wir eine Sprache die im Bereich NES verstanden wird und umgekehrt ... das LRC passt hervorragend in den Bereich NES!

Wir schaffen Wissen – heute für morgen

Liste der internationalen Kollaborationspartner

- GSI Helmholtzzentrum Darmstadt & Mainz University, Germany
- Lund University, Sweden
- Oak Ridge National Laboratory, United States
- CERN, Geneva, Switzerland
- Flerov Laboratory, Russia
- RIKEN & JAEA, Japan
- Lawrence Berkeley National Laboratory, United States
- Lawrence Livermore National Laboratory, United States
- Institute of Modern Physics, China
- Saha Institute of Nuclear Physics, India
- Institute of Electron Technology, Poland
- University of Jyväskylä, Finland
- University of Oslo, Norway
- University of Liverpool, United Kingdom

