

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

Stefan Hirschberg

Laboratory for Energy Systems Analysis (LEA): Competences and Highlights

NES Event 18 March 2015

LEA strategic goals

- Developing, implementing and applying integrated framework for inter-disciplinary technology assessment.
- Developing, maintaining and extending comprehensive and consistent databases relevant for inter-disciplinary systems analysis.
- Developing analytical models and tools to improve understanding of energy technology development and policy strategies for realizing sustainable energy systems at the Swiss, European and global levels.
- Addressing current and emerging safety issues, through the development, evaluation and application of risk analysis and human reliability analysis methods, and the collection and analysis of data and operating experience.

Technology Assessment (TA) P. Burgherr

- 9 staff scientists
- 1 Ph.D. student
- 1 vacancy (Ph.D. student))

Energy Economics (EE) Vacancy

- 2 staff scientists
- 2 post-docs
- 3 Ph.D. students
- 2 vacancies (GL + Ph.D. st.)

Risk & Human Reliability (RHR) V. N. Dang

- 5 staff scientists
- 1 post-doc
- 1 Ph.D. student
- 1 vacancy (Ph.D. student)

Personnel

- Currently 17 staff scientists (including Lab-head); thereof 5.8 PSI positions
- 3 Post-docs, 5 Ph.D. students
- 4 vacancies (+ 9 Future Resilient Systems Singapore)
- High number of Master/Bachelor students and internships
- Inter-disciplinary and multi-national (15 countries)
- Personnel with German as mother tongue (6), Swiss (4) and women (7)

Scope

- Current and future fossil, nuclear and renewable technologies; current and future mobility
- National, regional and global energy issues
- Risk-based perspective on human-related safety issues and innovative PSA applications

Risk and Human Reliability

Fukushima – analysis from an HRA view

Site-wide, 6-hour snapshot (excerpt)

Day	Time	Events	Goals
03-11	1800-0000	 1830 U1 freshwater inj. ready but reactor pressure is too high 2007 U1 reactor pressure read locally 2049, 2158 U1&U2 CR temporary lighting; U3&U4 temporary lighting 2350 U1 containment pressure read, near design pressure 	From afternoon, batteries collected from buses etc. to power instrumentation; small generators collected (for temporary lighting, and for instruments).
03-12	0000-0600	0000-0400 aftershocks delay actions 0400 U1 – fire engine connected (higher discharge head than D/D fire pump) 0430 Tsunami warning and suspension of field work (duration unclear) Arrival of power supply trucks from offsite. 0546-1430 U1 freshwater inj. at low rates	0006 U1 decision to prepare venting plan 0130, U1 venting strategy decided, pending (offsite) evacuations 0245 U1 decision to use fire engine for inj.
		0720 Low voltage for U1 provided	0905 U1 venting decision (alignments begin 0915)
	1200-1800	1430 U1 venting succeeds (rupture disk ruptures) 1453 U1 freshwater runs out 1530 High voltage for U2 provided 1536 U1 explosion	1454 U1 switchover to seawater
	1800-0000	1904 U1 successfully inj. seawater 2036 loss of U3 reactor level indication due to instrumentation batteries.	[Note: 2045 end of main U1 timeline from INPO]
03-13	0000-0600	0242 U3 HPCI manually tripped. Communicated to ERC at 0355.	0355 U3 depress (SRVs), batteries, seawater injection decisions 0515 U3 venting decision 0700 U3 freshwater prioritized

Day	Goals	Key events (completion, setbacks)
3-11 (Day 1)	U1 injection, depressurization	1830 U1 freshwater inj ready but RV press too high
3-12 (Day 2)	U1 injection, venting	0000-0400 21 aftershocks
		0546 U1 injection but low flowrate due to press
	Air supply for operation of valves for U1 containment venting	1430 U1 venting, allowing injection (freshwater) by fire engine, success
		1536 U1 explosion (damage to fire engine used for U1 freshwater injection; suspension of field work until 1720)
		1904 U1 injection (seawater) by restaging to use fire engine connected to FPS
3-13 (Day 3)	U3 venting, injection	0920 U3 venting successfully started, noted by ERC
	U2 venting, RV depress., injection	0925 U3 injection (freshwater)
		1100 U2 venting failed
	Scavenging batteries for U3 (a.m.)	12—aftershocks with evacuation
		1313 U3 injection (switchover to seawater)
		2100 U2 venting (2 nd attempt) failed
3-14 (Day 4)	Seawater level in U3 condenser pit	0110 low seawater level
	U3 restore/maintain injection	0900 condenser pit seawater level restored, success
	U2 venting, RV depress., injection	1101 U3 explosion
		1443-1630 aftershocks [p. 253-254 Hatamura interim]
		1630 U3 restoration of seawater injection
		1800 U2 SRV opened, decrease of RV level
		1954 U2 injection (seawater) at low rate
		2130 U2 2 nd SRV opened
2 1E (Day E)	Spont Fuel Dool	0600 LL4 evelosion
2-12 (D9A 2)		(0600-04 explosion)
		10000 02 containment breach suspected)

Actions: Outcomes, durations, delays

Function/action	Decision	Outcome/operation	Time to	Additional details
			achieve	
U2 freshwater and seawater inj (preparation)	03-12/early hours ~0255 (staging only)	The seawater equipment is damaged by the U1 explosion at 03-12/1536.		U1 venting had priority from 03- 12/0255. In parallel, workers at U2 worked to stage injection, planning to use fire pumps for fresh water and seawater.
U2 containment venting (strategy and preparation)	03-12/1730 (prioritized)	03-13/0810 first alignment took place, with opening of MO containment vent valve.		U2 containment venting was prioritized.
U2 venting (1)	03-13/1015	03-13/1100 (venting not successful)	45'	03-13/1015 is the actual order to vent, presumably the opening of the AO drywell and/or suppression chamber vent valve. Containment pressure below rupture disk setpoint and inability to keep vent valves open.
U2 seawater inj (1)	03-13/1205	Ready by 03-13 late afternoon.		03-13 evacuation orders due to aftershocks Lack of seawater 03-14/0110-0900 with priority for U3, U3 explosion damage at 03-14/1101.
U2 venting (2)	03-14/1230	03-14/2100 (not successful)	8.5h	U3 explosion at 03-14/1101 and aftershocks, both leading to suspensions of field work until 1600.
U2 RPV depress	03-14/1230	03-14/1800 (1 st SRV) and 2120 (2 nd SRV)	5.5h then 3+h	Evacuation order in force until 03-14/1600
U2 seawater inj (3)	03-14/1230 or 1325	03-14/1954 (actual start but no injection due to reactor pressure) 03-14/2120 (limited success after 2 nd SRV opened)	7h	U3 explosion at 03-14/1101 damaged equipment staged for U2, and evacuation order in force until 1600. 03-14/1630-1800 attempt to open an SRV and to align seawater injection. No seawater available (prioritized for U1 and U3 until 03-14/1957)

Fukushima analysis

Background

•Shortcomings of emergency preparedness were identified by many organizations relatively quickly

- Inadequacy of protections against tsunamis exceeding the design basis
- Design basis for Loss of Offsite Power: assumed short-term AC power only
- Severe Accident Management assumed AC power available within 30 minutes, including credit for AC power from neighboring unit
- Not analyzed
 - Design basis exceedance curve for tsunami (and, correspondingly, no PSA treatment of tsunami as consequence of earthquake)
 - SAMG based on internal events PSA only (no seismic, no tsunami, no area events affecting multiple units)

Became assumptions underlying Accident Management guidelines and procedures

- Critical assumptions of AM guidance and procedures were not satisfied in event
 - AC available within 30 min
 - DC available 8 hours
 - Operability from control room
 - Instrumentation available in control room
 - Loss of most on-site communications

Major delays

- Suspensions of field work due to tsunami warnings and earthquake aftershocks
- Unit 1 and Unit 3 reactor building explosions, scattering radioactive debris
- $\circ~$ led to suspensions of work
- o damaged staged equipment, e.g. U2 injection

- Power for instrumentation and actuation of equipment had to be improvised.
 - Scavenged batteries shared between instrumentation and actuation (10 car batteries = 120 V DC)
 - Compressors for actuation power
- "Foreseen" AM measures included no contingency for loss of all power, so plans needed to be developed ad hoc
 - Reactor depressurization (opening of SRVs)
 - Containment venting
- Essential AM measures that were needed in event were not foreseen, also had to be developed ad hoc
 - Water injection using fire engine
 - Injection of seawater
- Not foreseen => no procedure, no training, documentation not readily available (P&IDs), no equipment (hoses, connectors, etc.)
- Lack of resources (people, batteries) to pursue additional strategies in parallel, e.g. U2 and U3 venting / depressurization
 - Reports confirm that RCIC (U2) and HPCI (U3) operation explicitly used by ERC to prioritize implementation
- Strategies selected early (containment venting as well as seawater injection) but massively hindered by loss of all AC and DC and no anticipation of this condition

Technology Assessment Projects

Projects Relationship Diagram

S. Hirschberg, Laboratory for Energy Systems Analysis, Energy Departments

Health impacts of electricity generation:

Normal operation, accidents, terrorism

- Minimization of health impacts is one of the goals of sustainable energy policies.
- High public interest but serious misunderstandings and deficiencies of available analyses.
- Questions addressed:
 - How large are health effects associated with various electricity generation technologies and fuel cycles?
 - How do health risks from normal operation compare with those resulting from accidents and hypothetical terrorist attacks?
 - Which are the major limitations of the current estimates?

Normal Operation: Mortality based on Impact Pathway Approach

YOLL = Years of Life Lost

Severe accident fatality rates and maximum consequences

1000

Nuclear EPR

10

100

1.E-18

1.E-19

1.E-20

1.E-21

10000

Natural Gas

(*) non-OECD w/o China

100000

Hydro

Nuclear

Frequency-consequence curves for hypothetical terrorist attacks

PAUL SCHERRER INSTITUT

Source: Eckle, Cazzoli, Burgherr & Hirschberg, 2010

S. Hirschberg, Laboratory for Energy Systems Analysis, Energy Departments

Conclusions: Health effects

- General:
 - State-of-the art approaches to comprehensive comparative assessment of the various contributions to health risks of energy systems established and applied
 - Importance of covering full energy chains
 - Strong dependence on technologies, location and operational environment
 - Dominance of health impacts from normal operation
- **Normal operation risks:** Renewables and nuclear mostly exhibit very good performance with hydro being the best option; coal ranks mostly worst while performance of natural gas is mixed.
- Severe accidents risks: Lowest fatality rates apply to hydro and nuclear in OECD countries though in both cases events with very low frequency can lead to quite extreme consequences.
- **Terrorist threat risks:** Frequency of a successful terrorist attack with very large consequences is of the same order of magnitude as can be expected for a disastrous accident in the respective energy chain.
- **Limitations:** Choice of reference technologies, geographical coverage, treatment of health impacts of climate change, solar PV accident risks, cyber risks and implementation of terrorist risk assessment.

TA-SWISS project on deep geothermal energy

Zentrum für Technologiefolgen-Abschätzung Centre d'évaluation des choix technologiques Centro per la valutazione delle scelte tecnologiche Centre for Technology Assessment

Stefan Hirschberg, Stefan Wiemer, Peter Burgherr (eds.)

Energy from the Earth

Deep Geothermal as a Resource for the Future?

- Research consortium: 4 organizations 32 scientists
- Highly inter-disciplinary competences
- Effort: ~ 5 person-years
- Duration: ~18 months
- Report: ~500 pages
- Very high media echo
- Recognition (BFE etc.)

Project contributors

Paul Scherrer Institut (PSI)

Dr. Stefan Hirschberg
(Project Leader, Editor, Co-author Chapter 1, Author Chapters 9 & 10)
Dr. Peter Burgherr
(Co-editor, Author Chapter 1, Co-author Chapters 6.1 & 9, Contributor Chapter 10)
Dr. Warren Schenler
(Author Chapters 3.4 & 4, Co-author Chapters 1 & 9, Contributor Chapter 10)
Dr. Matteo Spada
(Author Chapter 6.1, Co-author Chapter 9, Contributor Chapter 10)
M. Sc. Karin Treyer
(Author Chapter 5, Co-author Chapter 9, Contributor Chapter 10)
M. Sc. Christian Bauer (Co-author Chapter 9, Contributor Chapter 10)
M. Sc. Xiaojin Zhang (Editorial Support)
B. Sc. Hiroki Oshikawa (Co-author Chapter 5)
M. Sc. Marco Miotti (Co-author Chapter 5)

DIALOGIK/University of Stuttgart

Prof. Dr. Ortwin Renn (Co-author Chapters 8.1 & 8.2, Contributor Chapter 10)
Dipl. Geogr. Christina Benighaus (Author Chapters 8.1 & 8.2, Contributor Chapters 6.3.2 & 10)
Dipl. Geogr. Ludger Benighaus (Co-author Chapter 8.1)
M. Sc. Aleksandar Jovanovic (Co-author Chapter 8.2)

University of Applied Science Zurich

Prof. Dr. René Wiederkehr (Author Chapter 7, Contributor Chapter 10)Prof. Dr. Andreas Abegg (Co-author Chapter 7)

Swiss Federal Institute of Technology (ETHZ)

Prof. Dr. Stefan Wiemer (Co-editor, Author Chapters 3.1.1 & 6.2, Contributor Chapter 10) Dr. Keith Evans (Author Chapter 3.2, Co-author Chapters 1 & 3.1.2, Contributor Chapter 10) Prof. Dr. Eduard Kissling (Co-author Chapters 2 & 3.1, Contributor Chapter 10) Prof. Philipp Rudolf von Rohr (Author Chapter 3.3, Contributor Chapter 10) **Dr. Barbara Schechinger** (Author Chapter 2, Contributor Chapter 10) Dr. Michael Stauffacher (Co-author Chapters 6.3.1 & 6.3.2, Contributor Chapter 10) Dr. Corinne Moser (Author Chapter 6.3.1, Co-author Chapter 6.3.2, Contributor Chapter 10) M. Sc Michael Kant (Co-author Chapter 3.3, Contributor Chapter 10) Dr. Toni Kraft (Co-author Chapter 6.2) M. Sc. Nora Muggli (Author Chapter 6.3.2) **Dr. Anne Obermann** (Co-author Chapter 3.1.1) **Dr. Benoît Valley** (Author Chapter 3.1.2) **Dr. Tobias Rothenfluh** (Co-author Chapter 3.3) Dr. Martin Schuler (Co-author Chapter 3.3) Dr. Panagiotis Stathopoulos (Co-author Chapter 3.3) M. Sc. Delano Landtwing (Co-author Chapter 6.2) Prof. Dr. Domenico Giardini (Internal Reviewer)

Costs of deep geothermal power vs. other technologies

Source: Schenler, 2014

Impact assessment results – Climate change

- The EGS potential is large provided a combination of cost reductions, heat sales and efficient use of the resource.
- It has so far proved **difficult to create a petrothermal reservoir to allow commercial flow rates**, without the benefit of pre-existing, highly-permeable fracture zones and faults.
- EGS technology is not mature and requires a program of basic research before it is ready for large-scale deployment.
- Environmental burdens of EGS are lower or of the same order as those of other electricity generation technologies in Switzerland.
- The contribution of **geothermal** to the **security of energy supply** should be more strongly emphasized.
- Earthquake risks can be controlled, but not eliminated. The success and economy of geothermal energy will depend on the level of socially acceptable risk.

TIMES model developments

S. Hirschberg, Laboratory for Energy Systems Analysis, Energy Departments

CROSSTEM Model

- CROSs border Swiss TIMES Electricity Model
- Extension of the STEM-E model to include the four neighbouring countries
- Time horizon: 2010 2070
- An hourly timeslice (288 timeslices)
- Detailed reference electricity system with resource supply, renewable potentials and demands for 5 countries
- Calibrated for electricity demand and supply data between 2000-2010
- Endogenous electricity import / export based on costs and technical characteristics

	CROSSTEM Scenarios
Sc.1	Baseline scenario No particular constraints in technology investment* Trade constraints applied – net exporter (France, Germany) cannot become net importer (Italy, Austria) and vice versa Switzerland self-sufficient CO_2 prices for allowances in the ETS as in WWB (SES 2050)
Sc.2	De-carbonization of power sector (95% CO ₂ reduction by 2050 from 1990 levels) for all five countries together All other conditions same as Sc.1 (including trade constraints)
Sc.3	No gas based generation in Switzerland Trade constraints relaxed for CH only (allowed to be a net importer) All other conditions same as Sc.2

* except where already part of policy: e.g., Nuclear phase-out in Switzerland (CH) and Germany (DE), no nuclear investment in Italy (IT) and Austria (AT). No Coal investment in Switzerland (CH).

- No Solar PV in CROSSTEM, more flexible gas plants
- Import/Export costs as well as surrounding country electricity profiles cause this difference

Source: Pattupara & Ramachandran, 2014

Source: Pattupara & Ramachandran, 2014

- Sc2 Gas plants replaced by gas CCS + renewables, lower pump hydro (higher electricity price)
- Sc3 Imports preferred to investments in renewables, Investments made elsewhere

S. Hirschberg, Laboratory for Energy Systems Analysis, Energy Departments

Comparison of Swiss electricity supply scenario studies

Study	Full name	Author (Modeller)	Year	System scope
BFE	Energieperspektiven für die Schweiz bis 2050	BFE (Prognos AG)	2012	Energy system
VSE	Stromzukunft Schweiz	VSE (Pöyry AG)	2012	Electricity
ETH / ESC	Energiezukunft Schweiz	G. Andersson, K. Boulouchos, L. Bretschger	2011	Energy system
SCS	SCS-Energiemodell	A. Gunzinger (SCS AG)	2013	Electricity
Greenpeace	Energy [r]evolution	S. Teske, G. Heiligtag (DLR, SCS AG)	2013	Energy system
Cleantech	Energiestrategie	F. Barmettler, N. Beglinger, C. Zeyer	2013	Energy system
PSI-sys	Transformation strategies towards a sustainable Swiss energy system – energy-economic scenario analysis	N. Weidmann	2013	Energy system
PSI-elc	Swiss electricity supply options (Energie-Spiegel 21)	R. Kannan, H. Turton	2012	Electricity

Overview of models

Study (electricity only)	Electricity demand model (if no model: data from)	Capacity expansion model	Dispatch model	Modelling of energy system network	Speciality
BFE	Simulation	Simulation	Simulation	na	
VSE (elc)	Simulation	Optimization		na	Cap./Disp. model also for neighbouring countries
ETH/ESC	Simulation	Simulation	na	na	3rd model used for the whole economy (labour, capital, energy)
SCS (elc)	(from BFE)	na	Simulation	na	Model is only for year 2050
Greenpeace	Simulation	Simulation	(from SCS)	yes	Electricity demand is endogenous (?)
Cleantech	Simulation	Simulation	na	na	no costs (not even ex-post)
PSI-sys	Optimization		na	yes	Electricity demand is endogenous
PSI-elc	(from BFE)	Optim	ization	na	«typical hour» for dispatch

PAUL SCHERRER INSTITUT

Production cost of generation mix

S. Hirschberg, Laboratory for Energy Systems Analysis, Energy Departments

PAUL SCHERRER INSTITUT

CO₂-emissions form power sector (without imports)

• **Comparison:** CO₂ from energy sector (+transport) today: ~40 Mio. tons/Jahr

BFE, NEP+E and BFE, POM+E have same domestic emissions, but POM-E has more imports

PAUL SCHERRER INSTITUT

Future Resilient Systems (FRS)

M1.4 Improving CI systems

M3.1 Human Decision-Making

M3.2 Sustainable Energy Demand

PAUL SCHERRER INSTITUT

Thank you for your attention! stefan.hirschberg@psi.ch lea.web.psi.ch

