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Reconstruction of Two-Prong Signatures with a Linearised Multiple
Scattering Vertex Fit for Mu3e:

The goal of this study is the development of an algorithm for the reconstruction of
two-prong signatures in the Mu3e detector.
The Mu3e detector is an electron spectrometer designed to search for the charged lepton
flavour violating (cLFV) decay µ+ → e+e−e+. Four cylindrical layers of thin silicon pixel
sensors are used to track electrons and positrons.
In addition, the detector can be used to search for other processes such as the cLFV
decay µ+ → e+γ and the neutral pion Dalitz decay π0 → e+e−γ if the photon can be
reconstructed. For this, the photon needs to convert to an e+e− pair.
A linearised vertex fit based on a multiple Coulomb scattering model is used in the scope
of this thesis to reconstruct vertices of simulated photon conversion events from two
oppositely charged electron tracks.
Despite the narrow opening angles of the two tracks, fit convergence in over 95 % of the
cases is achieved. The vertex resolution parallel to the photon momentum is in the order
of up to 3 mm, while the resolution perpendicular to the photon momentum is well below
100 µm. The direction of the photon can be reconstructed with an uncertainty of about
10 mrad.
By application of the algorithm to the primary e+e− pairs from Dalitz decays, a resolution
of the invariant mass of about 1.6 MeV is achieved. Measurements of the invariant mass
spectrum can be used to improve theoretical predictions of the anomalous magnetic
moment of the muon and to search for massive dark photons.
This master thesis demonstrates that the reconstruction of two-prong signatures is
feasible with high precision using a multiple scatteringvertex fit, which has a wide range
of applications in precision measurements and searches for physics beyond the standard
model that can be performed using the Mu3e detector.

Rekonstruktion von Zwei-Spur-Signaturen mit einem linearisierten Vertexfit
basierend auf Mehrfachstreuung für Mu3e:

Das Ziel dieser Studie ist die Entwicklung eines Algorithmus für die Rekonstruktion von
Zwei-Spur-Signaturen im Mu3e-Detektor.
Der Mu3e-Detektor ist ein Elektronenspektrometer, das für die Suche nach dem Lepton-
Familienzahl (LF) verletzenden Zerfall µ+ → e+e−e+ entwickelt wird. Vier zylindrische
Lagen dünner Siliziumpixelsensoren werden verwendet, um Elektronen und Positronen
zu detektieren.
Zusätzlich kann der Detektor genutzt werden, um nach weiteren Prozessen wie dem LF-
verletzenden Zerfall µ+ → e+γ und dem Dalitz-Zerfall des neutralen Pions π0 → e+e−γ
zu suchen, falls das Photon rekonstruiert werden kann. Dazu muss das Photon in ein
e+e−-Paar konvertieren.
In dieser Arbeit wird ein linearisierter Vertexfit basierend auf einem Modell der Mehrfach-
streuung verwendet, um Vertices von simulierten Photonkonversionsereignissen aus zwei
Elektronenspuren zu rekonstruieren.
Trotz des kleinen Öffnungswinkels der beiden Spuren wird eine Konvergenz des Fits in
über 95 % der Fälle erreicht. Die Vertexauflösung entlang der Photonrichtung ist in der
Größenordnung von bis zu 3 mm, während die Auflösung senkrecht zum Photonimpuls
deutlich unter 100 µm liegt. Die Richtung des Photons kann mit einer Unsicherheit von
etwa 10 mrad rekonstruiert werden.
Mit Hilfe des Algorithmus lässt sich die invariante Masse von primären e+e−-Paaren aus
Dalitzzerfällen mit einer Auflösung von ungefähr 1.6 MeV rekonstruieren. Messungen
des Spektrums der invarianten Massen können verwendet werden, um die theoretische
Vorhersage des anomalen magnetischen Moments des Myons zu verbessern und um nach
massiven dunklen Photonen zu suchen.
Diese Masterarbeit demonstriert, dass die Rekonstruktion von Zwei-Spur-Signaturen mit
Hilfe eines Vertexfits basierend auf Mehrfachstreuung möglich ist. Diese Rekonstruktion
hat zahlreiche Anwendungen für Präzisionsmessungen und die Suche nach Physik jenseits
des Standardmodells, die mit dem Mu3e-Detektor möglich sind.
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Introduction
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1. Introduction

With the discovery of neutrino oscillation, lepton flavour violation (LFV) has been

observed in the neutral lepton sector. In the past, several experiments have searched

for lepton flavour violation in the charged sector (cLFV), but cLFV has not been

observed to date.

The primary goal of the Mu3e experiment at Paul Scherrer Institute (PSI)

in Villingen, Switzerland is the search for the cLFV decay µ+ → e+e−e+ with an

unprecedented sensitivity of one in 1016 muon decays [1].

Four barrel-shaped layers of pixel sensors and two timing detector systems are

used to track electrons(1) originating from the target region. The Mu3e detector is

optimised for electrons with energies up to half the muon mass mµ/2 ≈ 53 MeV(2).

Electrons with transverse momenta of less than about 10 MeV will not reach the

outermost pixel layer and cannot be reconstructed.

Although Mu3e has been designed with a very specific goal in mind, a wide

range of other searches and studies can be performed using Mu3e’s electron tracking

capabilities. Many searches require reconstruction of events with two tracks This

thesis focuses on the reconstruction of two-prong events in the Mu3e detector,

namely electron-positron pairs from photon conversion and Dalitz decays. Photons

in Mu3e can only be detected when they convert to an electron-positron pair. To

find the conversion vertex, a linearised vertex fit based on multiple scattering is

used. The same linearised fit is also performed on the e+e− pair from the pion

decay. Multiple approaches to combine these pairs with reconstructed photons are

discussed.

In the scope of this thesis it was possible to demonstrate that the direction and

(1)In this thesis, the term electron is used for both the negative electron e− and its antiparticle,
the positron e+. If necessary, the charge is explicitly mentioned. The same applies to all other
elementary particles.

(2)When appropriate, natural units are used in this thesis, setting ~ = c = 1.
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1. Introduction

energy of photons can be reconstructed with a high precision. The lateral vertex

position can also be determined with a high precision, only the position along the

photon direction has uncertainties of the order of millimetres.
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2. Theory

2.1. Standard Model of Particle Physics

The Standard Model of particle physics (SM) describes matter particles (fermions)

and all their interactions mediated by bosons, except gravitation. The fermions

of the SM consist of quarks and leptons, which come in six flavours each, and

their antiparticles. The electromagnetic interaction between electrically charged

particles is mediated by photons. The strong interaction that confines quarks in

hadrons is described by quantum chromodynamics with eight gluons as the force

carriers. All fermions interact weakly. The weak interaction, responsible e.g. for

the beta decay of radioactive nuclei, is mediated by charged and neutral currents

with the massive W± and Z0 bosons. Furthermore, the Higgs mechanism and the

associated Higgs boson are responsible for the masses of the W and Z bosons and

Fermions Bosons

Force CarriersMatter

Quarks Gauge bosons

Higgs BosonLeptons

Figure 2.1.: Representation of the SM particles. For each fermion f , there
exists a corresponding antifermion f̄ . The W boson comes either
with positive or negative charge. Adapted from [2].
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2. Theory

the fundamental fermions. The particles of the SM are presented in figure 2.1.

Quark and lepton flavours are conserved by both the electromagnetic and

the strong interaction, only the charged current of the weak interaction breaks

the corresponding symmetry. In the case of quark flavour, the flavour violation

is described by the Cabibbo–Kobayashi–Maskawa matrix which allows for quark

mixing.

In the case of leptons, only transitions between a lepton ` and its corresponding

neutrino ν` are possible via the weak interaction (and the same for antileptons

` and their antineutrinos ν`). Therefore, not only the total lepton number L is

conserved, but also the lepton family number for each of the three generations: Le,

Lµ and Lτ, where L` = 1 for negative leptons `− and neutrinos ν`. Antileptons `+

and antineutrinos ν` carry negative lepton family numbers L` = −1.

The observation of neutrino oscillation [3–5] shows that the lepton family

numbers are not conserved for neutrinos. Neutrino mixing is possible if the SM is

modified to allow nonzero neutrino masses. This modification is sometimes called

νSM. The νSM relates the three weak neutrino eigenstates to the mass eigenstates

by the Pontecorvo–Maki–Nakagawa–Sakata matrix.

However, there are observations which cannot be explained by such a modifica-

tion to the SM. Only about 5 % of the energy-matter in the universe is baryonic

matter. Another 23 % is in the form of cold dark matter for which the νSM offers

no description or particle candidate. The remaining 72 % are in the form of dark

energy, also not explained by the νSM [6]. Furthermore, gravitation cannot be

expressed as a renormalisable quantum field theory and is therefore not included

in the νSM. Another open issue is the unexplained imbalance in baryonic matter

and antibaryonic matter. No SM process allows baryogenesis, i.e. the production

of the observed unequal amount of baryons and antibaryons.

The existence of these unexplained phenomena motivates the search for physics

beyond the SM (BSM) either by searches for possible new heavy particles produced

in high energy collisions or by precision tests of the SM.

6



2.2. Muon Physics

2.2. Muon Physics

With a mass of mµ = 105.658 374 5(24) MeV [7], the muon is the second lightest

charged lepton. Its mean lifetime is τ = 2.196 981 1(22) µs. In the context of Mu3e,

antimuons are considered rather than muons, but the properties are valid for both

the muon and the antimuon if one exchanges particles and antiparticles in the

decays.

2.2.1. Muon Decays

The muon decays predominantly via the Michel decay µ+ → e+νµνe with a

branching ratio of nearly 100 %. The radiative decay with an additional photon

in the final state is the second most common decay mode with a branching

fraction of BR = (1.4± 0.4)× 10−2 for a photon energy Eγ > 10 MeV and BR =

(3.3± 1.3)× 10−3 for Eγ > 20 MeV [7]. With a small probability, this photon is

created off-shell and converts internally. The branching fraction of this radiative

decay with internal conversion is BR = (3.4± 0.4)× 10−5 [7]. These three decays

are shown in figure 2.2.

(a) Michel decay µ →
eνν.

(b) Example radiative de-
cay µ→ eγνν.

(c) Example radiative decay
with internal conversion
µ→ eeeνν.

Figure 2.2.: Leading-order Feynman diagrams for the three most common muon
decays.
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2. Theory

2.2.2. Anomalous Magnetic Moment of the Muon

According to Dirac theory, the magnetic moment
# „

M of the muon is

# „

M = g
q

2mµ

#„

S (2.1)

where
#„

S is the spin, q is the electric charge, and mµ is the muon mass. The

gyromagnetic ratio g is predicted to be exactly 2 by the Dirac equation [6]. When

considering quantum loop effects, a small deviation from g = 2 can be calculated,

commonly parameterised by the anomalous magnetic moment, in the case of the

muon

aµ =
g − 2

2
. (2.2)

The SM prediction can be divided into three parts. Photonic and leptonic

loops contribute to aQED
µ , loops containing heavy W±, Z and Higgs bosons are

summarised in the electroweak part aEW
µ and hadronic contributions involving

quarks and gluons are taken into account by the hadronic part aHad
µ :

aSM
µ = aQED

µ + aEW
µ + aHad

µ . (2.3)

The main theoretical uncertainty of aSM
µ arises from the hadronic part aHad

µ , which

cannot be calculated from first principles [8]. The hadronic part itself can be divided

into three parts: leading order (LO) and higher order (HO) vacuum polarisation

(VP) contributions as well as light-by-light (LBL) scattering contributions:

aHad
µ = aHad,LO VP

µ + aHad,HO VP
µ + aHad,LBL

µ . (2.4)

Currently, measurements of g − 2 disagree with theoretical predictions with

a significance of 3.4σ [7]. This discrepancy hints at BSM physics and can be

explained by several models involving supersymmetric particles or dark photons,

light vector bosons that mainly couple to dark matter but could also couple to

matter via kinetic mixing with the photon [9]. To obtain more conclusive results,

more precise measurements of aµ and better theoretical predictions are necessary.

8



2.3. Neutral Pion Physics

The current SM prediction aSM
µ and world average aexp

µ are

aSM
µ = 1 165 917.63(46)× 10−9, (2.5)

aexp
µ = 1 165 920.91(63)× 10−9. (2.6)

2.3. Neutral Pion Physics

The neutral pion is the lightest meson (mπ0 = 134.9766(6) MeV) [7] and decays

almost instantly (τ = 8.52(18)× 10−17 s) via the electromagnetic interaction. With

BR(π0 → γγ) ≈ 98.82 % the decay to two photons is dominant.

2.3.1. Charge Exchange Reaction

Because of their short lifetime, neutral pions have to be produced directly in the

detector to study them. The most commonly used process is the charge exchange

reaction (CEX) of a negative pion that is stopped in a target with an abundance

of protons (typically liquid hydrogen):

π− + p→ π0 + n. (2.7)

About 60 % of the stopped pions in a liquid hydrogen target produce a neutral

pion [10]. Since this is a two-body reaction, the kinematics are fixed with final

state momenta of 28.5 MeV in opposite directions. In the case of radiative capture

π− + p→ n + γ, a highly energetic photon is emitted.

Another way to create neutral pions is via the production of delta baryons

using a high-energetic positive pion.

π+ + p→ π0+∆++

↪→ X

Due to the high mass of the delta baryon of 1232 MeV, the positive pion beam

needs a momentum of more than 497 MeV. The pions are not stopped in the

detector. However, the cross section is small compared to the 60 % π0 production

9



2. Theory

with CEX. The produced ∆++ baryons decay into nucleons and pions which are a

source of background avoided by CEX.

2.3.2. Dalitz Decay

The second most common decay of the neutral pion with a branching fraction of

BR ≈ 1.17 % [7] is the Dalitz decay π0 → e+e−γ shown in figure 2.3a. One of the

two photons is created off-shell and converts internally to an electron-positron pair.

Commonly used kinematic variables for the Dalitz decay are [11]

x =

(
Mee

mπ0

)2

=
(pe+ + pe−)2

m2
π0

and y =
2 pπ0 (pe+ − pe−)

m2
π0(1− x)

, (2.8)

where Mee is the invariant mass of the e+e− system and pπ0 , pe+ and pe− are the

four-momenta of the respective particles. The physical constraints on x and y are

given by

r2 =

(
2me

mπ0

)2

≤ x ≤ 1, |y| ≤
√

1− r2

x
. (2.9)

Normalised to the decay width of the dominant decay Γ(π0
2γ), the Dalitz decay

width has the following form [12]:

d2Γ(π0
D)

dxdy
=

α

4π
Γ(π0

2γ)
(1− x)3

x

(
1 + y2 +

r2

x

)
(1 + δ(x, y)) |F(x)|2 , (2.10)

(a) Leading order SM Feynman
diagram.

(b) Feynman diagram with a dark
photon A′.

Figure 2.3.: Two Feynman diagrams for the decay π0 → e+e−γ.
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2.4. Photon Conversion

where δ(x, y) accounts for radiative corrections and F(x) is the semi-off-shell

electromagnetic transition form factor (TFF) of the π0.

This TFF weakly depends on the kinematic variable x and is therefore commonly

described with a linear approximation F(x) ≈ 1 + ax with the slope parameter

a. Among other calculations, the TFF enters into the hadronic light-by-light

contribution to the anomalous magnetic moment of the muon g−2 (see section 2.2.2).

The value of the TFF slope is a = 0.032(4) [7] and can be measured from Dalitz

decays via reconstruction of the kinematic variable x [11]. Therefore, improved TFF

measurements with Dalitz decays would reduce the uncertainty of the predictions

for g − 2.

Measurements of the Dalitz decay of the neutral pion are also suited for other

searches for new physics. For example, the γ∗ in the Dalitz decay could be replaced

by a massive dark photon (see figure 2.3b). This would produce a bump in the

invariant mass spectrum of the e+e− system. A similar search by the NA48/2

collaboration has resulted in new exclusion limits in the mass range of the dark

photon 9 MeV < mA′ < 70 MeV [13]

2.4. Photon Conversion

The dominant interaction of high-energy photons (Eγ � me) with matter is the

conversion to an electron-positron pair. Conversion in the Coulomb field of electrons

is heavily suppressed compared to conversion in the field of nuclei.

The radiation length X0 is a material constant and describes the mean distance

over which an electron’s energy is reduced to 1/e by Bremsstrahlung. It is also

related to the mean free path λ of pair production of photons [6]:

X0 =
7

9
λ. (2.11)

The electron and positron created by photon conversion do not necessarily

have the same kinetic energy. In fact, the distribution of the energy-partition

parameter x = Ekin
+ /Ekin

pair is almost uniform in the energy range of photons in Mu3e

of Eγ < 53 MeV (see figure 2.4). Ekin
+ denotes the kinetic energy of the positron

and Ekin
pair denotes the kinetic energy of the electron-positron pair.

11



2. Theory

Figure 2.4.: Energy-partition function f(Eγ , Z) with the atomic number Z and
the photon energy Eγ as parameters as a function of x. The total
cross section can be obtained by multiplying the area under the
curve with Z(Z + 1)αr2

e where α is the fine structure constant and
re is the classical electron radius [14] (modified).

The opening angle between electron and positron is generally small with a

characteristic opening angle of Θ ≈ me/Eγ [14].

12



3. The Mu3e Experiment

The Mu3e experiment has been designed for the search for the cLFV decay of an

antimuon into two positrons and an electron. A previous search by the SINDRUM

collaboration published in 1988 has resulted in an upper limit for the branching

ratio of 1.0× 10−12 (90 % CL) [15]. The goal for Mu3e is a single event sensitivity

of 2× 10−15 in phase I and 1× 10−16 in phase II of the experiment [1]. To achieve

these goals in a reasonable amount of time, a high-rate muon beam is needed.

For phase I, a muon rate of up to 108 s−1 is provided by the πE5 beam line at

PSI. To reach the aimed sensitivity, a run time of 2.5× 107 s (290 days) is required.

Higher rates require a new beamline currently under study by the HiMB (high

intensity muon beam) project [16].

For well-defined kinematics of the decays, the muons are stopped on a target

where they decay at rest. One of the main challenges is multiple Coulomb scattering

(MS) of decay electrons in the detector material, which limits the momentum

resolution. To minimise the amount of MS, a low material budget inside the

detector is required.

This chapter provides an overview over the decay µ→ eee and the expected

backgrounds, the detector design and briefly discusses possible modifications to

the detector.

3.1. The Decay µ→ eee

In order to achieve the desired sensitivity, backgrounds need to be suppressed below

that level. Therefore, the signatures of signal and background events must be well

understood.

13



3. The Mu3e Experiment

(a) νSM diagram with
neutrino mixing.

(b) LFV via supersymmet-
ric particles.

(c) LFV at tree level medi-
ated via a Z′ boson.

Figure 3.1.: Different Feynman diagrams for the decay µ+ → e+e−e+.

3.1.1. Standard Model Channel

In the νSM, cLFV decays are only allowed via loops as shown in figure 3.1a.

This process is suppressed with a branching ratio BR < 10−54 [17] and cannot

be observed in the Mu3e experiment since the sensitivity is still many orders of

magnitude above the branching ratio. Therefore, any observation would be the

discovery of a physics process not described by the νSM.

3.1.2. Beyond Standard Model Channels

Several theories predict cLFV in experimentally observable occurrences. Examples

are grand unified models, models with an extended Higgs sector and supersymmetric

models [18]. Two exemplary processes are shown in figure 3.1b and 3.1c.

3.1.3. Kinematics of µ→ eee

The following characteristics of the decay µ+ → e+e−e+ are used to separate it

from background processes.

• Momentum conservation in muon decay at rest.

The momenta of all decay particles add up to zero:
∑

i ~pi = 0.

• Energy conservation in the muon decay.

The energies of all decay particles add up to the rest mass of the muon:∑
iEi = mµ.

• All decay particles have the same origin.

A common vertex for all three particle tracks can be found and they are

14



3.1. The Decay µ→ eee

emitted in time coincidence.

Background events violate some or all of these criteria.

3.1.4. Backgrounds

There are two types of background in Mu3e: accidental background due to super-

position of different processes, and muon decays with three electrons among other

particles in the final state (irreducible background).

Accidental Background

Particles from a combination of unrelated processes can mimic the µ→ eee signal

of two positrons and one electron. The probability of these coincidental overlays

increases with higher muon rates.

With a positive muon beam, there is an abundance of positrons from the

Michel decay. Sources for (negative) electrons are Bhabha scattering of positrons

with electrons in the stopping target and interactions of photons with the target

material (Compton scattering and photon conversion). These effects can be reduced

by minimising the material budget of the stopping target. Furthermore, three

generic tracks from these processes do not have a common vertex and are not

generally coincident in time. Misreconstruction of either positron tracks that are

reconstructed backwards or hits that were not produced by the same particle, can

also mimic electron tracks.

Therefore, a good vertex and timing resolution can suppress accidental back-

grounds. The vertex resolution is limited by the amount of multiple Coulomb

scattering in the target material and at the innermost pixel layer [19]. Also, a larger

distance between the target and the detector layers worsens the vertex resolution.

Radiative Decay With Internal Conversion

The other source of background is the radiative muon decay with internal conversion

µ+ → e+νµνe(γ
∗ → e+e−) shown in figure 3.2b (see also section 2.2.1). The three

tracks from this decay have the same vertex and are coincident. As shown in

figure 3.2b, some energy leaves the detector in the form of the undetected neutrinos

15



3. The Mu3e Experiment

(a) For small missing energies mµ − Etot the branch-
ing ratio for the decay µ→ eeeνν is heavily sup-
pressed [20].

(b) Feynman diagram for the
radiative muon decay with
internal conversion.

Figure 3.2.: The total energy Etot is the energy that can be reconstructed from
the electrons. The missing energy Emiss gets carried away by the
neutrinos and is not detectable.

(missing energy). Therefore, the sum of the reconstructed electron energies is less

than the muon rest mass
∑

iEi = Etot < mµ.

A good energy resolution is needed to suppress this background. The branching

ratio for this decay is small for small missing energies (see figure 3.2a). For missing

energies mµ − Etot smaller than five times the electron mass, the cumulative

branching ratio is 4.660(46)× 10−15 [20], which is still larger than the sensitivity

goal of Mu3e.

3.2. Photons in Mu3e

Photons need to convert to a pair of an electron and a positron that each carry a

transverse momentum large enough to reach the outermost detector layer to be

reconstructed. In the following, several processes creating photons in Mu3e are

described. Most of these photons are low-energetic, though, and cannot produce
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Figure 3.3.: Next-to-leading order calculations for branching ratio for the ra-
diative muon decay with respect to the photon energy. A muon
polarisation of 85 % is assumed, cuts on the electron energy of
Ee > 10 MeV and a on the polar angle of the photon of cos(θ) < 0.8
are applied. The branching ratio is exclusive (exactly one photon
is visible).
By courtesy of Yannick Ulrich (personal communication, March
2017 and [21]).

two reconstructable daughter electrons.

The main source of high-energy photons in Mu3e is the radiative muon decay

µ+ → e+νeν̄µγ (see also section 2.2.1). As shown in figure 3.3, most photons from

the radiative decay only carry little energy Eγ.

The two other main processes that produce photons are bremsstrahlung and

positron annihilation. Due to the low material budget of the Mu3e detector and

the low energy of these photons, bremsstrahlung and positron annihilation are

neglected in the studies of this thesis.

Bhabha scattering e+ + e− → e+ + e− of Michel positrons with electrons from

inside the detector material has the same signature as photon conversion: two

electrons with opposite charge from the same vertex that lies in material.

17



3. The Mu3e Experiment

Target

Inner pixel layers

Outer pixel layers

Recurl pixel layers

Scintillator tiles

μ Beam

(a) Lateral view.

(b) Transverse view.

Figure 3.4.: Schematic of the phase I Mu3e detector. Two positron tracks and
one electron track from the same vertex are shown: a candidate
for µ→ eee.

3.3. The Mu3e Detector

The Mu3e detector [1] consists of a stopping target that is surrounded by four

barrel-shaped layers of pixel detectors, grouped in two double layers as shown in

figure 3.4. For better timing resolution, two additional timing systems are used. A

solenoid provides a homogeneous magnetic field with a strength of 1 T parallel to

the muon beam. The active pixel sensors are cooled with a gaseous helium flow.

Simulations using this geometry are used for the studies presented in this thesis.

18



3.3. The Mu3e Detector

3.3.1. Stopping Target

The stopping target in the shape of a hollow double-cone has a length of 10 cm

and a maximum radius of 19 mm. The target is made out of Mylar foil with a

thickness of 75 µm in upstream direction and 85 µm downstream. Suspension is

realised by three nylon wires at each tip with a diameter of 250 µm. Furthermore,

one additional nylon wire runs through the target connecting the two tips.

3.3.2. Pixel Tracker

Two cylindrical pixel layers are positioned close to the target to maximise the

vertex resolution with the minimal radius of the innermost layer being 23.3 mm.

These inner layers consist of six pixel sensors in length with a total length of 12 cm.

The outer pixel layers are built from the same pixel sensors as the inner layers

but have a length of 34 and 36 cm for the third and fourth layer, respectively. The

minimum radius for the outermost layer is 86.3 mm.

Furthermore, as shown in figure 3.4, there are two additional detector sta-

tions with double layers of pixel sensors and timing detectors placed down- and

upstream of the central detector. These recurl stations increase the accuracy for

high-momentum tracks by measuring two additional hits and additional timing

information in the tile detector. Tracks that traverse the recurl station are stopped

in the tile detector.

It is foreseen that in phase II two more recurl stations are added to accept even

tracks with the highest possible momentum of half the muon mass and a transverse

momentum small enough to overshoot the first recoil station.

Pixel Sensors

The pixel layers in Mu3e are based on High-Voltage Monolithic Active Pixel Sensors

(HV-MAPS) [22] of size 20× 23 mm2. The active area of one sensor is 20× 20 mm2

with pixel sizes of 80× 80 µm2 corresponding to 250× 250 pixels. By thinning

the sensors to 50 µm, multiple Coulomb scattering is minimised. Together with

a polyimide support structure and a high density interconnect (HDI) providing

aluminium data and power lines, each layer has a total radiation length fraction of
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3. The Mu3e Experiment

X/X0 = 0.115 %.

3.3.3. Timing Detector

The purpose of timing detectors in Mu3e is the suppression of accidental background.

Since in the central part of the detector, spatial resolution and low material budget

are more important than in the recurl stations, two different timing detector systems

have been chosen.

In the central detector part, scintillating fibres are placed just inside the third

pixel layer (see figure 3.4). The timing resolution for this detector is better than

500 ps, allowing charge identification for tracks. Timing resolution improves with a

higher number of fibres. However, in a low-material detector like Mu3e, scintillating

fibres contribute significantly to the overall material budget. The current design

foresees using three fibre layers corresponding to 0.3 % of the radiation length in

total.

The second timing detector located in the recurl stations consists of scintil-

lating tiles with a size of 6.5× 6.5× 5 mm3 and provides the most precise timing

information of tracks with an accuracy of 100 ps. Multiple Coulomb scattering

in the tiles does not affect the tracking resolution. Therefore, higher amounts of

material can be afforded. The electrons are stopped in the beam pipe on which the

tile detector is located.

3.3.4. Data Acquisition

All subdetectors continuously send zero-suppressed hit information to the data

acquisition system which consists of three layers: front-end FPGAs, switching

boards and a filter farm.

The front-end FPGAs collect, sort and package data that is streamed from the

pixel and timing detectors. Switching boards act as switches between these FPGAs

and the filter farm. They allow each farm-PC to evaluate data from the full detector

in overlapping time frames. The farm PCs are equipped with high-end GPUs on

which track fits and vertex selection are performed. Only µ→ eee candidates are

kept whereas most of the background tracks are already filtered out at this stage.
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In total, the filter farm reduces the output from about 80 Gbit/s to a data rate of

50–100 MBytes/s which is then saved to mass storage.

3.4. Possible Modifications to the Mu3e Experiment

The electron tracking capabilities of the Mu3e detector can be used for other

measurements, some of which require modifications to the Mu3e detector.

3.4.1. Mu3e-Gamma

Upgrades to the Mu3e detector for the search for the cLFV decay µ → eγ have

been proposed. This section will briefly discuss this decay and the experimental

possibilities to search for it with Mu3e.

The Decay µ→ eγ

Like the decay µ→ eee, the decay µ→ eγ violates lepton flavour conservation. The

current upper limit on this decay has been established by the MEG collaboration

with BR < 4.2× 10−13 (90 % CL) [23] and will be improved by the upgraded

MEG II experiment [24]. Diagrams contributing to the process µ → eγ also

contribute to µ→ eeeby internally converting the photon into an electron-positron

pair. The sensitivity in the search for µ→ eee of these diagrams is suppressed by

a factor of 0.006 with respect to µ→ eγ [25].

Possible Upgrades to the Mu3e Detector

To enable the Mu3e detector to detect photons efficiently, modifications to the

baseline design are necessary and have been studied in [27]. A new proposal foresees

two additional pixel layers at radii much larger than the outer pixel layers in Mu3e

and an increased magnetic field of 2 T (see figure 3.5).

The radii of the additional layers are chosen to be large enough that positrons

from the target region with momenta of less than 53 MeV cannot reach the outer

layers. Photons can be reconstructed if they convert in a converter foil underneath

these additional layers and the conversion electrons recurl in the magnetic field. An

21



3. The Mu3e Experiment

Figure 3.5.: Schematic of the Mu3e-Gamma proposal. Photons convert in a
converter foil and the conversion electrons recurl multiple times.
For timing information, another timing detector is placed between
the converter and the pixel layers [26].

additional timing detector in the outer layers provides precise timing information

for background suppression and correct hit assignment to recurling electrons.

The vertex fit algorithm for photon conversion to an electron and a positron

studied in this thesis can also be deployed in the case of Mu3e-Gamma.

3.4.2. Neutral Pions at PSI

PSI offers multiple beam lines for negative and positive pions that could be used

to produce neutral pions. In principle, three beam lines are candidates for neutral

pion generation: πM1, πE1 and πE5, the beam line for Mu3e phase I. The possible

rates at the entrance to the areas are summarised in table 3.1. An overview of the

experimental hall at PSI is shown in figure 3.8.

A liquid hydrogen target is desirable because it would provide a high yield

of neutral pions. To stop pions in a liquid hydrogen target small enough to fit

inside the Mu3e detector, pions need to have a momentum of less than 70 MeV.

Therefore a degrader is necessary to slow down pions with higher momenta. A
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3.5. Track Reconstruction

Table 3.1.: Rates and electron backgrounds for different pion beams suitable
for neutral pion production at different momenta. By courtesy of
Peter-Raymond Kettle (personal communication, March 2017), [28,
29].

Beam Lines Pion Rate [s−1] e/π Ratio

πM1
210 MeV π− 2.2× 107 1:1
111 MeV π− 4× 104 175:1
500 MeV π+ 4× 107 negligible

πE1
210 MeV π− 4× 108 1:2
111 MeV π− 2× 107 10:1
500 MeV π+ 1× 108 < 1?

πE5
109 MeV π− 1.5× 108 4:1

thicker degrader causes more multiple Coulomb scattering which leads to higher

losses in the beam, especially for a small target. An alternative target material

would be CH2.

Furthermore, electron/positron backgrounds are expected in significant amounts

(see table 3.1). At πM1 and πE5, electron/pion separation is not possible due

to the existing separators being insufficient for the necessary momenta and due

to spatial constraints considering the Mu3e detector. Therefore, only at the πE1

beam line, electron/pion separation is feasible.

Beam momenta of 500 MeV are at the very edge of the spectrum at PSI. Taking

this, the small cross section and the backgrounds from the reaction π+ + p →
π0 + ∆++ into account leads to the conclusion that π0 production via CEX is

strongly preferred at PSI.

3.5. Track Reconstruction

Tracks in Mu3e are reconstructed from hit positions in the pixel detector [30] and

matched with additional timing information from the two timing detector systems.

A free, charged particle describes a helical trajectory in a homogeneous magnetic
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triplet 1

triplet 2

(a) Overlapping triplets. (b) Tracking in a MS dominated regime.

Figure 3.6.: Illustrations of the triplet fit.

field. With a good spatial resolution, multiple Coulomb scattering in the detector

layers is the dominant source of tracking uncertainties (sketched in figure 3.6b). A

track fit can thus be formulated as a combination of independent hit triplet fits.

Using the hit positions of an initial triplet of hits, a helical trajectory with

multiple Coulomb scattering at the middle detector layer is reconstructed. Multiple

Coulomb scattering theory (see chapter 4.3) provides the necessary variances for

the fitted scattering angles ΦMS and ΘMS. The fit is performed by finding a 3D

bending radius R3D that minimises the χ2 function [30]

χ2(R3D) =
Φ2

MS(R3D)

σ2
Φ

+
Θ2

MS(R3D)

σ2
Θ

. (3.1)

To use the hit information of an additional layer to the track, another triplet is

constructed using the two outer hits from the first triplet and a hit from the next

layer (see figure 3.6a). Scattering in different layers is independent, therefore a

global χ2 function can be expressed as a sum

χ2
global =

∑
χ2

triplet. (3.2)
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Minimisation of this sum is performed to find a 3D track radius that is constant

under the assumption of negligible energy loss in the layers.

If a track recurls in the magnetic field, it can produce up to two additional

hits in one of the recurl stations or four and more additional hits in the central

detector. The momentum resolution for six- and eight-hit tracks is higher than for

four-hit tracks because of the larger lever-arm. Timing information improves the

track finding performance and suppresses reverse reconstruction of eight-hit tracks.

Modifications of the track reconstruction allow for tracks to be reconstructed

starting with a hit in the second pixel layer [31]. These tracks can be used to

enhance the sensitivity in searches with displaced vertices such as decays between

the first and second layer or photon conversion in the second layer.

The radius of the outermost layer and the magnetic field are optimised to

minimise the effect of multiple scattering for recurling particles in first order (see

figure 3.7).

Ω ~ π

MS

θ
MS

B

Figure 3.7.: The effect of MS is minimised for semi-circular trajectories.
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67 m

53 m

590 MeV Proton Beam

Figure 3.8.: Section of the experimental hall at PSI Potential beam lines for
pion measurements with Mu3e are highlighted (red borders). By
courtesy of Markus Lüthy, Wolfgang Burkert and Thomas Rauber
(edited).
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4. The Multiple Scattering Vertex

Fit

The following chapter describes the multiple Coulomb scattering (MS) vertex fit [19].

Within the scope of this thesis, this fit has for the first time been performed with

two-track events and, on that account, the derivations have been reviewed and the

implementation has been improved.

4.1. Introduction

Almost all detectors currently used in high energy physics use a semiconductor-

based inner tracking system. Due to the good spatial resolution of pixel detectors—

80 µm/
√

12 ≈ 23 µm in the case of the Mu3e experiment—hit uncertainties become

less and less important. Particles in Mu3e have a low momentum compared to

tracks in collider experiments such as LHC. Therefore MS is much more pronounced

in Mu3e (see section 4.3).

Low-momentum tracks are highly bent in magnetic fields and cannot be ap-

proximated by straight tracks in the inner vertex region. In Mu3e, momenta range

up to 53 MeV and the homogeneous magnetic field has a strength of 1 T. A more

adequate track model is a helical track model. Highly bent trajectories create

nonlinearities which have to be taken into account when linearising by iterative

fitting.

The aim of the linearised vertex fit described in this chapter is to exploit the

high precision of modern pixel detectors and handle the challenges of highly bent

tracks that are subject to MS. It is assumed that all tracks of an event originate

from the same vertex. The position of this vertex #„v is reconstructed using only the

track parameters and no additional information like opening angles between the
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4. The Multiple Scattering Vertex Fit

Figure 4.1.: Sketch of the azimuthal angle ϕ and the polar angles θ and
λ = θ − π

2 .

tracks or the position of a target. Therefore, the vertex fit is suited to reconstruct

particle decays and conversions of any mass and is not limited to photon conversion.

4.2. Coordinate System

A right-handed Cartesian coordinate system is chosen with the z-axis pointing in

the direction of the homogeneous magnetic field and the beam. The x- and y-axes

are then defined as horizontal and vertical, respectively. Furthermore, scattering

angles are usually studied in a spherical coordinate system where θ and λ denote

the polar angles, and ϕ the azimuthal angle (see figure 4.1).

4.3. Multiple Coulomb Scattering

For extrapolation of tracks into the vertex region, MS at the innermost pixel layer

is the only uncertainty considered. Spatial and directional uncertainties of the

reconstructed tracks as well as the uncertainty of the bending radius are neglected.

By introducing the right kink angles ΦMS,i and ΘMS,i at the first layer for each

track i, the tracks are forced to intersect with a common vertex position #„v (see

figure 4.2).

Multiple Coulomb scattering in material is caused by multiple deflection of

a charged particle in the Coulomb field of nuclei. In contrast to deflection off

electrons (ionisation), there is no significant energy transfer in multiple Coulomb
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4.3. Multiple Coulomb Scattering

(a) Transverse view. Shown are the ver-
tex position #„v and hit position #„xH ,
as well as directions at the vertex
(ϕv), before (ϕ0), and after scatter-
ing (ϕ1). The vector

#„

d between ver-
tex and hit position and the scatter-
ing angle ΦMS are also shown. Φ0V

denotes the bending angle between
#„v and #„xH .

(b) Sketch of longitudinal scattering.
Since the polar angle θ is an invari-
ant under motion in a homogeneous
magnetic field, it can be assumed
that the angle does not change be-
fore the particle reaches the first
layer. The scattering angle ΘMS is
given by the difference of angles af-
ter (θ1) and before scattering (θ0).

Figure 4.2.: Sketches of scattering at the first layer in different views. The
vertex position #„v and hit position #„xH as well as the relevant
directional vectors are shown.

scattering. For tracks in a homogeneous magnetic field, this means that only the

direction is changed by MS, while the 3D bending radius provided by the track

reconstruction is conserved.

For tracks with energies well between the electron and proton mass me � E �
mp, single scattering on nuclei is described by Mott scattering. The differential

cross section dσ
dΩ

as a function of the scattering angle ϑ and the electron energy E

is given by [6]: (
dσ

dΩ

)
Mott

=
α2

4E2 sin4(ϑ/2)
cos2 ϑ

2
, (4.1)

where α is the fine-structure constant.

The distribution of scattering angles for multiple Coulomb scattering is de-

scribed by Molière’s theory. For small scattering angles ϑ, the central 98 % of the

distribution can be described as Gaussian with a mean 〈ϑ〉 = 0 and a projected
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root mean square given by the Highland representation [14]:

σMS =
13.6 MeV

βp
q

√
δeff

X0

[1 + 0.038 ln(δeff/X0)], (4.2)

where p is the particle momentum in MeV, β is the velocity in units of the speed of

light and q is the charge of the scattered particle (|q| = 1 for electrons and positrons).

δeff/X0 is the effective thickness of the scattering material δeff = d/ cosα in units of

the radiation length X0 that depends on the thickness d and the inclination angle α.

For Mu3e, δeff/X0 is in the order of 0.1 % per layer for perpendicular tracks.

The variances of the two scattering angles ΘMS and ΦMS are then given by

σ2
Θ = σ2

MS and σ2
Φ = σ2

MS/ sin2 θ where θ is the polar angle of the track direction

[30]. In the local coordinate system of the track, the variances are equal and the

transformation to the global coordinate system results in the additional factor

1/ sin2 θ for the azimuthal angle.

4.4. Least Squares Method

To find the best estimate for a common vertex position #„v , the χ2-function of the

kink angles is minimised:

χ2( #„v ) =
∑

i=tracks

ΦMS,i(
#„v )2

σ2
Φ,i

+
ΘMS,i(

#„v )2

σ2
Θ,i

(4.3)

to obtain the most probable common vertex position #„v for all tracks. Decoupling of

ΦMS and ΘMS is a result of coordinate transformation from the moving orthonormal

frame to the global coordinate system [32]. Mean scattering angles of zero are

directly given by scattering theory.

In the notation of [33], the scattering angles of a single track can be expressed

as the vector of kink angles

#„α ≡ #„α( #„v ) =

(
ΘMS( #„v )

ΦMS( #„v )

)
. (4.4)
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4.4. Least Squares Method

Linearisation around an initial vertex estimate #„v 0, i.e. #„v ≈ #„v 0 +
# „

dv, yields

#„α( #„v ) = #„α 0 + d #„α with
#  „

dα = J
# „

dv, (4.5)

where #„α 0 := #„α( #„v 0) is the set of initial kink angles and

(J)ij =
∂( #„α)i
∂( #„v )j

∣∣∣∣∣
#„v= #„v 0

(4.6)

is the Jacobian matrix evaluated at the initial vertex position #„v 0.

In order to calculate the scattering angles for N tracks, one can extend the

initial scattering angles and Jacobian matrices in the following block matrix form:

#„α 0 =


#„α 0

0

#„α 1
0

...
#„αN−1

0

 and J =


J0

J1

...

JN−1

 (4.7)

with dimensions 2N × 1 for the initial scattering angles #„α 0 and 2N × 3 for the

Jacobian block matrix J.

Equation 4.3 with correlations in block matrix notation yields the objective

function

S =
(

#„α 0 + J
# „

dv
)T

Σ−1
(

#„α 0 + J
# „

dv
)
. (4.8)

Herein, Σ denotes the block-diagonal covariance matrix

Σ =


Σ0

Σ1

. . .

ΣN−1

 with Σi =

(
σ2

ΘMS,i
cov(Θ,Φ)i

cov(Θ,Φ)i σ2
ΦMS,i

)
. (4.9)

The variances σ2 are obtained from scattering theory (section 4.3) and cov(Θ,Φ)

denotes the covariance of the two angles, which is zero in the chosen coordinate

system. The inverse of the error block matrix is the weight block matrix W = Σ−1.
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The objective function is minimised by solving ∂S

∂(
# „
dv)

= 0, which yields

JTW #„α 0 + JTWJ
# „

dv = 0. (4.10)

Solving these normal equations determines the best-fit vertex correction
# „

dv

and its error matrix Σ # „
dv:

# „

dv = −
(
JTWJ

)−1
JTW #„α 0 (4.11)

Σ # „
dv =

(
JTWJ

)−1
. (4.12)

The block-diagonal structure of the covariance matrix allows a straightforward

calculation of these matrix products:

JTWJ =
N−1∑
i=0

JTi WiJi (4.13)

JTW #„α 0 =
N−1∑
i=0

JTi Wi
#„α 0,i. (4.14)

To account for nonlinearities, one can perform this fit iteratively by using the

sequence #„v n+1 = #„v n +
# „

dvn.

4.4.1. The Error Matrix

Every covariance matrix is diagonalisable [34], which means that a linear transfor-

mation to a set of uncorrelated variables can be found. Since all eigenvalues are

non-negative, a covariance matrix can be interpreted as an ellipsoid with the length

of the semi-principal axes corresponding to the standard deviations in the new

basis σ1,2,..,n. This so-called error ellipsoid represents the volume of uncertainty for

the fitted parameters.

A three-dimensional ellipsoid with two equal semi-diameters is called a spheroid.

If one semi-diameter is smaller than the other two, the spheroid is called an oblate

spheroid, if it is larger, it is called a prolate spheroid.

For the small opening angles between the tracks of photon conversion, the

error ellipsoid is expected to be a spheroid. The shape of the ellipsoid is studied in
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(A) The two tracks inter-
sect in two points.

(B) The tracks do not in-
tersect and lie outside
of each other.

(C) One track encloses the
other.

Figure 4.3.: The three possible configurations for two helical tracks in the
transverse view (not possible for photon conversion).

section 5.3.

4.5. Initial Vertex Finding

In the case of two tracks, initial vertex finding can be performed geometrically

by assuming helical tracks and separating the track in a transverse and a longitu-

dinal component. In transverse view, helical tracks are circular. Three different

configurations are possible (see figure 4.3):

(A) The tracks intersect in two points.

(B) The tracks do not intersect and lie outside of each other.

(C) One track encloses the other.

Configurations with only one touching intersection are possible when two tracks

graze in one point. In these cases, the touching intersection is chosen to be the

initial vertex estimate.

In case A, when there are two intersections in the transverse view, the distances

in z at both transverse intersections are compared. The intersection with the

smaller z-distance is then chosen as the initial guess for the vertex fit. The x- and

y-position of the initial guess are directly obtained from the transverse intersection.
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The z-component of the initial guess is chosen to be the mean of the z-coordinates

of the tracks at the point of transverse intersection. In case B and C, a transverse

point of closest approach can be found, from which the x- and y-position of the

initial guess are calculated. The z-component is again obtained by taking the

average z-positions of both tracks at the point of closest approach. If there is only

one intersection, this is also the point of closest approach. The question how to

treat these transitional cases is merely technical and the result does not depend on

the implementation.
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5. Photon Studies

This chapter covers the application of the vertex fit (see chapter 4) to two tracks

that belong to a photon conversion event. As photons only convert in matter,

conversion events in Mu3e can be divided into two groups. Either, the photon

converts in passive material, such as the target, and the conversion electrons cover a

significant distance before they produce hits in the pixel detector, or the conversion

occurs in one of the pixel detector layers. The former will be called conversion in

the target, the latter will be called conversion in a layer. If photons convert in one

of the layers, the two electron tracks produce hits either in the same pixel or in

two pixels next to each other.

If the energy deposition from ionisation in the active part of the pixels is less

than 5 keV, no hit is registered in the simulation. For photon conversion within

the silicon, this means that the probability for producing a hit becomes small if

the electrons only cover short distances. The mean total energy loss including

bremsstrahlung is about 0.4 keV/µm per particle in silicon [14]. In the case that

less than 5 keV are deposited in the silicon, no hits are produced in the first layer.

Thus, the conversion vertex is spatially well separated from the first hit position

(then in the second layer). These events are therefore not regarded as converted in

a layer.

A very small contribution(1) also comes from conversion in the gaseous helium.

Conversion in the helium in the target region is treated the same way as conversion

in the target material. Conversion in between the pixel layers is not regarded as

conversion in one of the two layers for the same reasons as above.

First of all, general challenges of vertex reconstruction using a linearised vertex

fit with highly parallel tracks are explained. Behaviour of the fit itself and ways to

(1)The probability for conversion in helium is very small due to the radiation length of
X0 = 5.67× 105 cm [7].
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ensure convergence are discussed. The main part of this chapter consists of the

study of reconstructed quantities for photon conversion events. In the end, a brief

estimate of the expected amount of converted photons from radiative muon decays

is given.

5.1. Simulation and Reconstruction

Results shown in this chapter are obtained using an extended version of the Mu3e

framework [1]. The reconstruction is modified to also reconstruct tracks starting

from the second detector layer with five or seven hits in total [31] and tracks can

share a common pixel hit.

The vertex fit itself is implemented in the watson tracking library [35]. The

development version 0.6-dev features a reimplementation of the vertex fit using a

different track parametrisation. It supports Tikhonov regularisation [36] to allow

for an effective cut-off of vertex changes above a certain length scale. For future

compatibility, this version is used in the studies presented here. The implementation

is tested and improved by comparing to the previous implementation and by using

MINUIT, an alternative minimisation program [37].

Except for the studies of radiative muon decays in section 5.5, photons are

generated isotropically in radial direction on a spherical surface around the centre

of the target. The centre of the target is omitted to avoid conversion and scattering

in the nylon wire (see section 3.3.1). The photon energies are uniformly distributed

between 50 and 55 MeV. For the radiative muon decays, a minimum photon energy

of 20 MeV is chosen which corresponds to a branching fraction of 0.437 %.

Tracks with different numbers of pixel hits enter the vertex fit. The short-

est tracks have four hits in the central part of the detector, the longest tracks

reconstructed have eight hits. No differentiation between tracks that enter the

vertex fit with different numbers of hits were made. Tracks with an even number of

hits are reconstructed starting from the innermost detector layer. Tracks with an

odd number of hits have their first hit in the second detector layer. For different

length of tracks, different cuts on the χ2 of the tracks are applied. These cuts are

summarised in table 5.1.
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Table 5.1.: χ2-cuts for tracks reconstructed from different numbers of hits as
used in this thesis. For 5- and 7-hit tracks, optimised by [31].

# hits χ2
track,max

4 32
5 13
6 48
7 22
8 48

5.2. General Challenges

As described in chapter 4, the χ2-function of the kink angles of all tracks is minimised

by linearising the kink angles #„α around an initial vertex position estimate #„v 0 using

the Jacobian matrix J:

#„α( #„v ) ≈ #„α( #„v 0) + J
# „

dv with (J)ij =
∂ #„α i
∂ #„v j

∣∣∣∣
#„v= #„v 0

. (5.1)

Higher order contributions are omitted by linearisation, particularly the next term

of the series expansion 1
2
(

# „

dv)T H
# „

dv with the Hessian matrix (H)i,j = ∂2 #„α
∂ #„v i∂

#„v j
.

Tracks from photon conversion events are very parallel at the true conversion

vertex, which poses a difficulty on the vertex fit, since the derivative of #„α with

respect to the direction of the tracks nearly vanishes for both tracks. This leads to

an overestimation of the vertex corrections
# „

dv. In case of perfect parallelity the cor-

rections would become infinite. The same applies to the shape of the error ellipsoid

obtained from the covariance matrix of the vertex correction (equation 4.12).

Single large overestimations of the correction can cause the position #„v i used

in the next iterative step to be so distant from the hit positions that no physical

kink angles can be found to force the tracks on the vertex position #„v i (see also

appendix A.1). Overestimation can also cause the fit to overshoot the χ2 minimum

repeatedly, which results in oscillation around the minimum (see section 5.4.1).

To limit too large vertex corrections, Tikhonov regularisation is implemented to

effectively limit the magnitude of
∣∣∣ # „

dv
∣∣∣. Unless stated otherwise, an upper limit of

1 mm is chosen. Furthermore, oscillations are damped as explained in section 5.4.1.
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5.3. Chi-squared in Space

The vertex fit provides an error estimate in form of a covariance matrix that can

be represented as an error ellipsoid (see section 4.4.1).

The shape of this ellipsoid can be studied using the ratios of the lengths of

the semi-principal axes of the error ellipsoid. With the length of the largest semi-

principal axis σ1 and the second and third largest axes σ2 and σ3, respectively, one

can define the ratios

r12 =
σ1

σ2

and (5.2)

r23 =
σ2

σ3

, (5.3)

with σ3 ≤ σ2 ≤ σ3. (5.4)

The error ellipsoids of 774 converged fits from conversion events in the stopping

target material are studied without Tikhonov regularisation. The average ratios

are calculated to:

ron target
12 = 29.316± 0.038 and (5.5)

ron target
23 = 1.006588± 0.000008. (5.6)

The results r12 � r23 and r23 ≈ 1 imply a prolate spheroidal shape of the error

ellipsoids. For conversion in layers, the covariance matrix is ill-defined and no ratios

can be provided (see section 5.4.1).

5.3.1. Orientation of the Error Ellipsoid

A comparison of the angle between the major semi-axis of the error ellipsoid and

the photon momentum shows that the major axis of the error ellipsoid and the

photon are well aligned (see figure 5.1). Since the parallelity of the two tracks near

the true vertex is the cause for the long shape of the error ellipsoid, it is clear that

the orientation of the ellipsoid and the photon momentum are correlated.

40



5.3. Chi-squared in Space

Entries  94662

Mean   0.9997

RMS    0.000473

, major axis)
γ

(p∠cos 
0.995 0.996 0.997 0.998 0.999 1

#E
ve

nt
s

0

5000

10000

15000

20000

25000

30000
Entries  94662

Mean   0.9997

RMS    0.000473

Figure 5.1.: Histogram of the cosine of the angle between the photon momentum
and the major axis of the error ellipsoid.

5.3.2. Chi-squared Maps

To visualise the shape of the χ2-minimum, χ2-maps are created. For this, one

defines a pseudo decay plane in which the tracks are bent after conversion. The

plane is spanned by the direction of the photon and a vector perpendicular to both

the magnetic field
#„

B and the photon momentum.

One characteristic map is shown in figure 5.2. Two effects are visible: In photon

direction, the minimum is much broader than in the other direction, and even

though the true conversion vertex is well within the 2σ region, the χ2 minimum is

displaced by almost three millimetres, which matches well the RMS of the residual

distribution (see section 5.4.4).

5.3.3. Existence of a Second Minimum

In some cases, the electron and the positron can scatter in a way that results in

two local χ2-minima. The existence of a second minimum cannot be detected

by the MS vertex fit. Since a second minimum can only form if there are two

intersections in the transverse plane (configuration A), table 5.2 suggests that the

fit still converges in one of the minima. However, these two minima are embedded

in the same long valley (see figure 5.3). No event with a separation of more than
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Layer

Tracks

(a) Full view of the event. The innermost
detector layer and the two tracks are
shown.

(b) Close-up view of the region around
the minimum. Contour lines for 1σ,
2σ, and 3σ are shown.

Figure 5.2.: χ2 map for a single event in 2D. The grid is chosen to be on
the pseudo decay plane. Note that the origin is the true point of
conversion.

1σ has been observed in the studies of this thesis, therefore even the wrong local

minimum is still within the uncertainties of the global minimum.

5.4. Photon Vertex Fit Studies

This section covers studies of the behaviour and results of the vertex fit. First,

convergence of the fit is discussed, then resolutions of reconstructed quantities are

presented.

5.4.1. Convergence

Successful fitting is not guaranteed, even for the correct combination of tracks.

A fit is regarded as converged if within a finite number of iterations nsteps,max a

vertex correction below a certain threshold δmax is reached. For the following

studies, nsteps,max is chosen to be 1000 and δmax to be 1 µm. If two consecutive

vertex corrections cancel each other out, the fit is most likely oscillating around
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5.4. Photon Vertex Fit Studies

Figure 5.3.: Contour plot for photon conversion with two local χ2-minima. The
true conversion vertex is at the origin in this figure.

the χ2-minimum. Oscillation between two points can be prevented by comparing

the difference of the vertex correction of the i-th iteration and the correction of

the previous step. To prevent the fit from overshooting, the i-th vertex correction

d #„v i can be artificially damped, if an oscillation is detected. In the context of this

thesis, a damping factor of 0.1 is chosen:

# „

dv → 0.1 · # „

dv. (5.7)

More complex oscillations can be taken into account as well. In the context of

this thesis, the corrections of the three last iterations are considered. If one of

the following conditions is fulfilled after the tenth iteration, the current vertex

43



5. Photon Studies
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(a) Undamped two-point oscillation, no
convergence after 1000 iterations.
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(b) Damped two-point oscillation, con-
verged after 53 iterations.
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(c) Undamped irregular oscillation, no con-
vergence after 1000 iterations.
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(d) Damped irregular oscillation, con-
verged after 93 iterations.

Figure 5.4.: Examples of the vertex fit not converging without damping. Shown
is only the x-component of the vertex fit position. 5.4a and 5.4b
show the same event, so do 5.4c and 5.4d. For demonstration
purposes, no limit on the vertex correction via Tikhonov regular-
isation is implemented here. Damping is implemented from the
10th iteration onwards.

correction is scaled down:

|d #„v i−1 + d #„v i| < |d #„v i| (5.8)

|d #„v i−2 + d #„v i−1 + d #„v i| < |d #„v i| (5.9)

|d #„v i−3 + d #„v i−2 + d #„v i−1 + d #„v i| < |d #„v i|. (5.10)
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The effect of damping can be seen in figure 5.4 for two-point oscillation (5.4a

and 5.4b) and a more irregular oscillation (5.4c and 5.4d).

An appropriate choice for the Tikhonov regularisation scale is a maximum

vertex correction of 1 mm. A single overestimation of the vertex correction cannot

cause the fit to fail by moving the fit position to unreachable distances, if the

corrections are limited.

With these countermeasures against fit failure, convergence is achieved in 95.6 %

of the time. The effects of different conversion locations and configurations of the

tracks are broken down in table 5.2. Conversion can occur in the stopping target or

one of the silicon pixel layers. Only tracks beginning in the first and second layer

are reconstructed, thus only conversion in the first and second layer can be found.

For the different locations, conversion events are divided by the initial configuration

of the tracks, i.e. whether there are intersections in the transverse projection

(configuration A) or not (configuration B). Furthermore, the two electrons from

photon conversion in one of the pixel layers can be so close that the same pixel is

traversed by both particles. Then, the two tracks share their first hit.

The column occurrence denotes the occurrence in the respective group. The

occurrence of conversion at each location is to be understood globally, i.e. 7.8 %

of the reconstructable conversion events occurs in the target. In 60.9 % of these

events, the two tracks had transverse intersections, etc.

Conversion in Target

The fit converges in 99.1 % of the cases in which a photon converts in the material

of the stopping target. In nearly all cases in which the fit does not converge, at

one point, the iterative fit has arrived at a point which could not be reached by

introducing kink angles at the first layer.

The fit convergence for photon conversion in the target material depends on

the configuration of the two tracks (see section 4.5). For two intersections in the

transverse projection (configuration A), 98.6 % of the fits converged. For events

without a transverse intersection (configuration B), the fit converges in over 99.9 %

of the time. Configuration A occurs slightly more often than configuration B with

60.9 %.
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Table 5.2.: Convergence of the vertex fit for different configurations of the tracks. The
fit can fail due to exceeding of the maximum number of steps nsteps = 1000
or because no initial kink angles could bend the tracks on one of the vertex
positions #„v i during the iterative fit. In configuration A, the two tracks have
two intersections in the transverse view, in configuration B, there are no
intersections.

occurrence converged nsteps exceeded no kink angles

Conversion in Target
total 7.8 % 99.1 % < 0.1 % 0.9 %

config. A 60.9 % 98.6 % < 0.1 % 1.4 %
config. B 39.1 % 99.9 % < 0.1 % < 0.1 %

Conversion in Layer 1
total 44.3 % 96.9 % 0.2 % 2.9 %

config. A 98.4 % 97.0 % 0.2 % 2.8 %
config. B 1.6 % 90.6 % 2.1 % 7.3 %

shared hit 94.0 % 98.8 % 0.2 % 1.0 %
shared hit & A 100 % 98.8 % 0.2 % 1.0 %
shared hit & B 0 % — — —

no shared hit 6.0 % 66.5 % 1.5 % 32.0 %
no shared hit & A 73.9 % 58.0 % 1.3 % 40.7 %
no shared hit & B 26.1 % 90.6 % 2.1 % 7.3 %

Conversion in Layer 2
total 38.8 % 95.6 % 0.4 % 4.0 %

config. A 97.6 % 95.7 % 0.3 % 3.9 %
config. B 2.4 % 89.0 % 3.2 % 7.7 %

shared hit 90.2 % 98.7 % 0.2 % 1.1 %
shared hit & A 100 % 98.7 % 0.2 % 1.1 %
shared hit & B 0 % — — —

no shared hit 9.8 % 66.9 % 2.4 % 30.7 %
no shared hit & A 75.7 % 59.8 % 2.2 % 38.0 %
no shared hit & B 24.3 % 89.0 % 3.2 % 7.7 %

Conversion in Layer 1, First Hit in Layer 2
total 9.1 % 86.2 % 9.9 % 3.9 %

In Total 100 % 95.6 % 1.2 % 3.3 %
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Conversion in Layer

The overall fit convergence for photon conversion in layers is at 96.9 % and therefore

slightly lower than for conversion in the target. Most events have tracks with two

transverse intersections (98.4 %). For these events, convergence is at 97.0 % while

only 90.6 % of the events in configuration B converged. Again, the dominant reason

for fit failure is the inability to find the right kink angles.

If the two electron tracks from photon conversion in one of the detector layers

have not separated enough, they hit the same pixel meaning the two tracks share

their first hit. This happens in 94 % of photon conversions in the layer. For those

conversion events, the vertex fit converged 98.8 % of the time. If the two tracks

do not have a shared hit, convergence is only at 66.5 %. In these cases, the initial

vertex estimate can lie outside of the detector layer in which the first hits are

detected. χ2 is reduced by correcting the vertex fit to be even further outwards.

This works as long as kink angles can be found to bend the tracks to these vertex

positions. If the vertex position is probed too far outside, no kink angles can bend

the tracks to force them to intersect with that position.

5.4.2. Number of Steps and Correction Size

The number of iterations required for the fit to converge nsteps and the size of the

last vertex correction
∣∣∣ # „

dvlast

∣∣∣ are important quantities to verify the fit performance.

The iterative vertex fit is only considered converged if a vertex correction below

1 µm is achieved in one thousand or fewer iterations.

In figure 5.5, the distributions for nsteps and
∣∣∣ # „

dvlast

∣∣∣ are shown for photon

conversion in the stopping target and in the pixel detector layers. The average

number of iterations needed for convergence in the target 51.9 is well below the

limit of nmax
steps. The average vertex correction before convergence is 0.86 µm.

In the case of photon conversion in one of the layers, the first vertex correction

is close to zero in many cases. Since these corrections are well below the threshold of

δmax = 1 µm, the fit is considered converged in this case. This behaviour occurs for

photon conversion events with shared hits. The continuous part of the distributions

corresponds mostly to conversion events without shared hits.
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Figure 5.5.: The number of iterations and the last vertex correction before
convergence in the target and first two detector layers. Note that
for conversion in the layers, almost all events are in the bins at

nsteps = 0 and
∣∣∣ # „

dvlast

∣∣∣ = 0. The upper boundaries of nsteps = 1000

and
∣∣∣ # „

dvlast

∣∣∣ = 1 µm are appropriate limits chosen.

5.4.3. Resolutions

A vertex position #„v fit that minimises the χ2-function is reconstructed using the

vertex fit described in chapter 4. Various quantities can be reconstructed from the

vertex position and the track parameters of the two electrons. Studies concerning

these reconstructions are presented and compared to Monte Carlo truth information

in the following section.
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Figure 5.6.: Residuals of the vertex position for photon conversion in the target
material, projected on the photon momentum (left) and on the
plane transverse to it (right). The red lines show Gaussian fits.
In 5.6a, the mean value from the Gaussian fit is marked with a
blue line, in 5.6b, the mean value is fixed to µ ≡ 0.

5.4.4. Spatial Resolution

The actual vertex position is of great interest and can be used for instance to

identify displaced vertices from particles with finite lifetime. For photon conversion,

the results differ significantly between conversion in the stopping target material

and conversion in one of the pixel detector layers. Therefore, the resolutions for

the vertex position are presented independently for these cases.

Photon Conversion in Target

As pointed out in section 5.3, the shape of the χ2-minimum suggests a difference

between the photon direction and the transverse plane perpendicular to it. Dis-

tances projected on the photon momentum vector are denoted as parallel or with

the symbol ‖, while distances projected on the transverse plane are denoted as

perpendicular or with the symbol ⊥.

The vertex position residuals for photon conversion in the target are shown

in figure 5.6. For the parallel part of the residuals, the Gaussian fit results in a
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standard deviation of σ = 1.4 mm, while the histogram has an RMS of more than

two times the Gaussian standard distribution with σRMS = 2.9 mm. Gaussian fits

are performed to obtain an estimate for the width of the distribution in the central

region. Comparison of the standard deviation obtained by the Gaussian fits and

the RMS of the two histograms shows that the tails of the distributions are more

pronounced than described by a Gaussian distribution.

For the perpendicular part of the residuals, the binning is chosen so that each

bin covers the same area of 10 000 µm2. Since the perpendicular part is non-negative

by definition, a Gaussian distribution with a fixed mean of µ ≡ 0 is used for the

fit. Again, the RMS of the histogram of σRMS = 81 µm is larger than the fitted

standard deviation of σ = 62 µm, although these two values are closer than in the

parallel part of the residuals.

Furthermore, the distribution of the parallel residuals is left-skewed with a

skewness of
m3

m
3/2
2

=
m3

σ3
= −0.75, (5.11)

where mi =
∑n

j=1(xj−µ)j

n
is the i-th moment about the mean µ of a distribution.

Examination of the parallel part of the residuals for tracks in configuration

A and B separately shows that the residual distribution is much more skewed for

configuration A, i.e. the case that the tracks have two intersections in transverse

projection (see figure B.1 in the appendix). The skewnesses for the two different

configurations are as follows:

Config. A :
m3

m
3/2
2

= −0.78 (5.12)

Config. B :
m3

m
3/2
2

= −0.12. (5.13)

Not only is the residual distribution for configuration A more skewed than for

configuration B, it is also broader. The RMS values for each histogram are:

Config. A : σRMS = 3.5 mm (5.14)

Config. B : σRMS = 1.7 mm. (5.15)
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The broader and more asymmetric shape of the distribution for configuration

A can be explained by the shape of the χ2-minima. In the case of two transverse

intersections of the electron tracks, the χ2-minimum typically lies close to one of

these points (see also figure 5.3). Looking at the two spherical coordinates ϕ and θ

separately illustrates this. At the points of transverse intersection, by definition

no scattering angles in ϕ have to be introduced to let the two tracks intersect.

Scattering angles in θ are smaller for the intersection that is further away from the

hit positions. This corresponds to the direction opposite of the photon momentum,

i.e. negative values of ( #„v fit − #„v true)‖. This produces the left-skewedness of the

residual distribution in the configuration with two transverse intersections of the

tracks (see figure B.1a). Of course, in the real fit procedure, correlations between

the two scattering angles are taken into account.

In the case of no transverse intersections (configuration B), the χ2-minimum

typically is usually found near the point of transverse closest approach of the two

tracks. Therefore, no direction along the photon momentum is preferred over the

other and thus the residual distribution in figure B.1b is close to symmetric.

Photon Conversion in Layers

For shared hits, the fit converges in the position of this hit, which is in the

centre of the silicon part of the pixel detector. The residuals of the vertex fit are

determined by the detector geometry in this case. Therefore, the representation of

the residuals is divided into the radial component R =
√
x2 + y2 (figure 5.7a) and

the z-component (figure 5.7c and 5.7d).

For comparison, figure 5.7b shows the inverse radiation length of the pixel

detector layer as it is implemented in the simulation. The origin is set in the

centre of the silicon and the distance is measured in inwards direction. The pixel

detector layer consists of a 50 µm silicon pixel detector simulated as pure silicon,

an HDI simulated as two 14 µm aluminium layers separated by 52 µm polyimide

(PI) and an additional 25 µm thin polyimide foil for mechanical support. The

conversion probability density is proportional to the inverse of the radiation length

X0, therefore one sees a clear correspondence between figures 5.7a and 5.7b. As the

two innermost layers are an octagonal and a decagonal prism respectively, photons
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Figure 5.7.: Residuals of the vertex fit for photon conversion in the pixel
detector.

coming from the centre of the detector generally are not perpendicular to the pixel

layers. For the innermost layer, the azimuthal impact angle is in the range of 67.5◦

to 112.5◦. Therefore, the structures seen in figure 5.7b do not represent a purely

horizontal cross section of the pixel layer as seen in in figure 5.7a, but an overlay

of projections deviating by up to 22.5◦ from the perpendicular cross section.

As a minimum energy deposition of 5 keV in the silicon is required, the detector

efficiency is dependent on the path length. In figure 5.7a, shorter path lengths in

the silicon correspond to the left side of the histogram.

Figure 5.7c shows the residuals of the z-coordinate of the vertex position.
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Figure 5.8.: Residuals of the vertex position for photon conversion in the first
or second layer, projected on the photon momentum (left) and on
the plane transverse to it (right). Only conversion events without
shared hits are selected.

Besides a broad peak in the interval between −40 µm and 40 µm, there are tails

towards both sides. For figure 5.7d, an additional cut on the photon direction of

|λγ| < 0.1 is applied to select photons with only little momentum in z-direction.

With the additional cut, the tails from figure 5.7c vanish, indicating that they

belong to events with small impact angles. One can directly relate the width of

the distribution to the 80 µm pixel size of the detector. The RMS of 23 µm also

matches the expected resolution obtained from a uniform distribution with a width

of 80 µm:

σ = 80 µm/
√

12 ≈ 23 µm. (5.16)

Conversion in Layers Without Shared Hits

If a photon converts in one of the pixel detector layers and the tracks separate

well enough, two neighbouring pixels can be hit. Similar to conversion in the

target, the uncertainties are determined by the photon direction (see the residuals

in figure 5.8). With very few exceptions, all residuals ( #„v fit − #„v mc)‖ are negative.

In the geometry of this study, negative residuals express a shift inwards. Since hit
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position uncertainties are not taken into account by the vertex fit, large scattering

angles would be necessary to bend the tracks onto the true vertex position inside

the layer. By moving the vertex position towards the inner part of the detector, the

bending angles, and thus, χ2 are reduced. The second peak at about −2 mm consists

almost exclusively of events with configuration A. It can therefore be assumed that

in these cases, two minima exist and the fit converges in the wrong one. Without a

shared hit, the RMS of σRMS = 2.1 mm of the parallel part is significantly higher

than with a shared hit. The assumption that the spatial uncertainty of the hit

position is negligible does not hold for conversion inside the layers. A correct

treatment of these cases would require a modified vertex fit taking hit uncertainties

into account.

The residuals of the perpendicular part, shown in figure 5.8b with an RMS of

σRMS = 34 µm are very small compared to the parallel part. The RMS is equal to

the RMS in z-direction for shared hits, indicating that only the resolution parallel

to the photon direction is affected by the absence of a shared hit for conversion in

the layer.

5.4.5. Angular Resolution

Photon conversion vertices are generally displaced from the decay emitting the

photon, e.g. π0 Dalitz decays or in the search for µ→ eγ. For full reconstruction

of the original decay, the photon must be extrapolated back towards the vertex

of the initial (radiative) decay. To suppress combinatorical backgrounds, a good

angular resolution is desirable.

To reconstruct the direction of the photon, the electron and positron tracks are

extrapolated back to the point of transverse closest approach to the reconstructed

vertex position.

The residuals of the polar and azimuthal angles obtained this way are shown

in figure 5.9. The standard deviations obtained by fitting normal distributions

to the central part of the distributions are σλ = 10 mrad and σϕ = 11 mrad. The

RMS of the histograms are larger with σRMS
λ = 11 mrad and σRMS

ϕ = 14 mrad. The

discrepancy of the standard deviations and the large χ2 of the Gaussian fits match

the optical impression that the distributions are indeed not Gaussian and the fits
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Figure 5.9.: Residuals for the reconstruction of the photon direction. The red
lines are Gaussian fits with the standard deviations given in the
plots.

are not to be understood as anything more than an estimate for the width in the

central part of the distribution.

No difference in resolution has been observed between conversion in the target

and in the pixel layers. Misreconstruction of the vertex position along the photon

direction leads to misreconstruction of the directions of the individual tracks at

the point of convergence.

5.4.6. Energy Resolution

Reconstruction of the photon energy is necessary to reconstruct the total energy of

an initial particle. In the decay µ→ eγ, the photon would have an energy of half

the muon mass. High precision is needed to distinguish signal from background

events.

In the process of photon conversion in the Coulomb field of a nucleus, only a

negligible amount of energy is transferred to the nucleus. Therefore, the photon

energy Eγ can be directly reconstructed as the sum of the energies of the electron

and positron E− =
√
p2
− +me and E+ =

√
p2

+ +me with the respective momenta

p± and the electron mass me. The momenta are provided by the track reconstruction

(see section 3.5).
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Figure 5.10.: Residuals for the photon energy Eγ, the electron energy E− and
the positron energy E+.

The residual distribution of the photon energy is shown in figure 5.10a. The

RMS is σRMS
γ = 0.78 MeV. For the sake of completeness, figures 5.10b and 5.10c

show the residual distributions for the electron and positron energies. Calculating

the uncertainty one would expect from error propagation using the RMS of these

momenta σ±, one obtains

σγ =
√
σ2

+ + σ2
− ≈ 0.79 MeV, (5.17)

which is close to the observed RMS. The vertex fit has no influence on the recon-

struction of the energy, therefore uncertainties are solely due to track reconstruction.
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Since the momentum resolution of electrons in Mu3e is limited by multiple Coulomb

scattering, the energy resolution for photons is expected to be worse for lower

photon energies.

5.4.7. Invariant Mass Resolution

The invariant mass of an electron-positron system is of great interest and can be

used for bump searches in π0 Dalitz decays and for rejection of Bhabha scattering

backgrounds (see section 5.5.2).

In the same way one reconstructs the momentum of the photon, one can

reconstruct the invariant mass Mee of the electron-positron system. Figure 5.11

shows both the true and the reconstructed distributions for this invariant mass

Mee of photon conversion events.

The residuals of the reconstructed invariant mass for conversion in the target

and in the layer are shown in figure 5.11b and 5.11c, respectively. Both residual

distributions are right-skewed with skewnesses of 1.14 and 1.95 for conversion in

the target and in the layers, respectively. The invariant mass is reconstructed from

the opening angle between the electron and the positron, which is close to zero.

Only very small angular misreconstructions can actually decrease the invariant

mass further. Large misreconstructions of the opening angle in either direction

lead to a reconstructed invariant mass that is too large. Therefore, the residual

distribution Mee,fit −Mee,true is skewed towards positive values.

The RMS for the residual distributions for conversion in the target is 873 keV,

while the RMS for conversion in the layer is at 513 keV. Since the vertex position

is known with a higher precision for conversion in the layer, the invariant mass can

be reconstructed with higher precision as well.
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Figure 5.11.: Distributions and residuals of the invariant mass of the electron-
positron system.

5.4.8. Chi-squared Revisited

The χ2-distribution for one degree of freedom is expected to peak at χ2 = 0.

For photon conversion in the stopping target material, the distribution shown in

figure 5.12a matches that expectation. The vertex finding efficiency (shown in

figure 5.12b) reaches 90 % for a cut at χ2 = 6.

Selecting events with a low χ2 does not improve the vertex resolution (see

figure 5.12c and B.2 through B.5 in the appendix). Instead, a stricter χ2-cut

favours events with a broader and more asymmetric residual distribution of the

58



5.4. Photon Vertex Fit Studies

parallel part. With a cut of χ2 < 1, the skewness of the distribution is −0.88 (see

figure B.2a), whereas the skewness lies closer to zero for looser cuts.

5.4.9. Summary

With a fit convergence in 95.6 % of all photon conversions with two reconstructed

tracks, it is safe to say that the fit converges reliably.

For photon conversion in the material of the stopping target, convergence is

even better at 99.1 %. The spatial resolution perpendicular to the photon of well

below 100 µm is more than one magnitude better than in the direction parallel to

the photon. Photon conversion in the pixel detector layers can be reconstructed

with the vertex fit as well. In the case where the two tracks of the electron and the

positron share hits, the fit converges in the position of the hit.

After reconstruction of the vertex position, different quantities can be recon-

structed by extrapolation of the electron and positron tracks to the found vertex.

The invariant mass of the electron-positron system can be reconstructed with a

precision better than 1 MeV for conversion in the target and a precision of about

500 keV for conversion in the pixel layers. For the photon energy, no information

about the fit position is necessary and its resolution is limited by the momentum

resolution of the individual electron tracks. No difference between the angular

resolution for convergence in the target and in the pixel layers has been observed.

In both cases, the azimuthal and polar angle can be reconstructed with a precision

of 10–15 mrad. The photon energies in this study are between 50 and 60 MeV.
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Figure 5.12.: Distribution of χ2 of the MS vertex fit and vertex selection
efficiency for different cuts on χ2.
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5.5. Photons from Muon Decays in Mu3e

So far, all studies of the vertex fit were performed using a photon spectrum in the

range of 50 to 55 MeV. In reality, most photons expected in the Mu3e experiment

have energies below that. To account for this, vertices from photon conversion of

photons from radiative muon decays µ→ eννγ are reconstructed.

The Mu3e framework allows for generation of one guaranteed radiative muon

decay per 50 ns time frame. Ten million of such frames are generated. The minimum

photon energy for the generated decays is set to 20 MeV, since photons below that

energy cannot produce two conversion electrons that reach the outermost detector

layer and are thus outside of the acceptance. The branching ratio for radiative

muon decays with Eγ > 20 MeV is calculated to be 0.44(12) % by Monte Carlo

integration of the differential branching ratio of the radiative decay, normalised to

1.4(4) % at Eγ > 10 MeV [7]. Therefore, this sample corresponds to the amount

of radiative decays one expects in a total of 2.27(65)× 109 muon decays. All

simulated muons are polarised in negative z-direction which is also the direction of

the magnetic field.

5.5.1. Geometrical Acceptance for Radiative Decays

Only in 406 out of 107 frames, both the electron and positron from the photon

conversion have transverse momenta large enough to produce hits in all four detector

layers of the central detector. Conversion events where the electron and the positron

share the first hit of their respective tracks are not considered. Also, an extension

of the track reconstruction allowing reconstruction of tracks starting in the second

layer is not implemented in this study. If these two features are implemented,

photon reconstruction is extended by a factor of 9.56 (see table 5.2, the cases

considered here make up 10.46 % of all reconstructable events).

Therefore, one can expect 9.56·(406±20) reconstructable radiative muon decays

per 2.27(65)× 109 beam muons. The probability that a single polarised muon

decays emitting a high-energetic photon that converts both conversion electrons

being reconstructable is equal to (1.69± 0.49)× 10−6. The dominant uncertainty

stems from the branching ratio of the radiative muon decay.
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Figure 5.13.: Histogram of the simulated true invariant mass of e+e− pairs
from Bhabha scattering of Michel positrons on electrons in the
target material.

This estimation does not include tracking and vertex fitting inefficiencies.

Parity violation in muon decays causes the positron to be preferably emitted in

the direction of the muon spin. The beam polarisation in Mu3e is expected to be

around 85 %, which would increase the amount of photons emitted in transverse

direction compared to this study. Also, only tracks starting in the first detector

layer are considered.

5.5.2. Bhabha Scattering Background

One important background for photon vertex finding is Bhabha scattering of

positrons (for instance from µ→ eνν) on electrons in the detector material. The

signature of Bhabha scattering is essentially the same as for a conversion event: An

electron and a positron coming from the same vertex in material with a typically

small opening angle. However, Bhabha pairs have an invariant mass between

4.5 MeV and 7.4 MeV (see figure 5.13). With a resolution in the order of 1 MeV,

some amount of smearing is to be expected. This has to be studied in further detail

when estimating sensitivities to specific phenomena involving photon emission

events. Rejection of photons with reconstructed invariant masses between 4.5 MeV

and 7 MeV causes a loss of 5.2 % of true photon conversion events.
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5.5.3. Internal Conversion Background

The combination of the lower-momentum positron and the electron from the

radiative muon decay with internal conversion also has the same signature as

photon conversion: one electron and one positron originating at the same vertex.

Unlike photon conversion, these decays can only occur in places irradiated by

the muon beam of Mu3e, which is mostly the stopping target. A small amount of

muons is expected to be stopped in the material of the innermost pixel detector layer.

Therefore, internal conversion is most importantly a possible source of background

for photon conversion in the target with a small share of muons stopped in the

innermost pixel detector layer.

The angular distribution of these pairs is dictated by the polarisation of the

muon beam. The angular distribution for photon conversion depends on the

effective thickness of the material the conversion takes place in. It is possible to

suppress these background events in the reconstruction. If a second positron can

be traced to the same vertex, the event can be rejected as a photon candidate.
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This chapter presents first studies that investigate whether studies of neutral pion

Dalitz decays π0 → eeγ are feasible with the Mu3e detector.

For studies involving Dalitz decays, all three decay particles have to be re-

constructed and a common vertex must be found. Electrons and positrons are

reconstructed as tracks in Mu3e, and the possibility to reconstruct photons in the

Mu3e detector is discussed in chapter 5.

In the following chapter, an estimation for the acceptance of Dalitz decays is

given and the reconstruction of the decay vertex from just the electron and the

positron is studied. The resolution of the invariant mass of the pair is studied,

which is crucial for studies of the TFF and for searches for dark photons in Dalitz

decays. Furthermore, different approaches for the combination of the two electrons

and the reconstructed photon are discussed.

6.1. Simulation

Baseline of these studies is the (unmodified) version of the Mu3e detector as

described in chapter 3.3. Neutral pions are generated on the stopping target via

primary particles with the same stopping distribution a muon beam would have.

Simulated are kinematics for the two production channels discussed in chapter 2.3.

Pions produced via the charge exchange reaction (CEX) π− + p → π0 + n have

a kinetic energy of 2.88 MeV and are isotropically emitted. If pions are produced

in association with the ∆++ resonance π+ + p→ π0 + ∆++, they have a forward

momentum of 49 MeV (see also section 2.3).

Simulating pions this way also brings the same inefficiencies that are expected

for a muon beam in Mu3e: Some primary particles do not reach the stopping target

or pass the target without being stopped. Furthermore, a small fraction of primary
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particles produces the pions in-flight. Since the kinematics are defined in the rest

system of the primary particles, pions produced in-flight have a small boost in

positive z-direction.

Backgrounds from the charged pion beams or ∆ baryons and beam contamina-

tion with electrons or muons are not simulated. Only Dalitz decays are simulated,

therefore none of the pions decay into two photons.

6.2. Acceptance for Dalitz Decays

Acceptance for Dalitz decays can be divided into two parts: the geometric acceptance

of the electron-positron pair, and the successful reconstruction of the photon. Four

tracks in total are expected for one complete Dalitz decay with photon conversion.

Since the Mu3e detector is optimised for low material budget, the probability for

a photon to convert is fairly low. The estimation of acceptance in the following

section is factored and calculated individually for the Dalitz pair and the photon.

6.2.1. Geometric Acceptance of the Electron-Positron Pair

Similar to section 5.5.1, ten million 50 ns time frames with one pion each are

simulated. Particles with momenta below 5 MeV are omitted in the simulation

since they are not within the range of acceptance. Therefore, it can occur that only

one of the two Dalitz electrons is simulated for one Dalitz decay. Finally, one can

count how many frames have two Dalitz electron tracks that produce at least four

Table 6.1.: Geometric acceptance of the Mu3e detector for the electron-positron
pair from π0 → e+e−γ. Shown are results for the kinematics of CEX
reaction and pion production in association with ∆++ baryons.

CEX ∆ resonance

simulated 10 000 000 10 000 000
decays on target 7 802 747 7 800 523
two tracks 7 128 175 7 134 673
both have four hits 3 579 333 3 383 101
acceptance fraction (45.87± 0.02) % (43.37± 0.02) %
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hits, which is the minimum number of hits to reconstruct a track. The acceptance

fraction f is then given as the following ratio:

f =
# frames with two Dalitz electrons with four hits

# frames with a Dalitz decay
. (6.1)

The geometric acceptance for Dalitz pairs with kinematics corresponding to

CEX and the production via the ∆ resonance is summarised in table 6.1. In both

cases, the acceptance is more than 40 %. For CEX kinematics, the acceptance

is slightly higher with (45.87± 0.02) % compared to (43.37± 0.02) % from pions

created in association with ∆ baryons. Note that these results do not take tracking

and vertex finding efficiency into account.

6.2.2. Acceptance Including Photons

The full reconstruction of Dalitz decays requires not only reconstruction of the

electrons, but of the photon as well. The reconstruction of photons in the Mu3e

detector is covered in chapter 5. Without any modifications to the detector,

the acceptance for photons is well below one percent, mainly due to the small

conversion probability inside the detector. The results in table 6.2 suggest a very

low acceptance fraction.

It is to be noted that in this analysis, none of the aforementioned improvements

are utilised. Therefore, all tracks have a hit in the innermost pixel detector layer

and shared hits are not considered. This corresponds to photon conversion in the

target and 6 % of the conversions in the innermost layer or 10.6 % of what would

be detectable with the aforementioned improvements of track reconstruction (see

table 5.2). This results in a factor of 9.56, which accounts for the improvements.
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Table 6.2.: Geometric acceptance of the Mu3e detector for the photon from
π0 → e+e−γ for the kinematics corresponding to the two main
production channels. The corrected fraction takes improved track
reconstruction into account.

CEX ∆ resonance

simulated 10 000 000 10 000 000
decays on target 7 802 747 7 800 523
two conv. tracks 10 472 11 165
both have four hits 2 157 2 127
acceptance fraction (0.0276± 0.0006) % (0.0273± 0.0006) %
corrected fraction (0.264± 0.006) % (0.261± 0.006) %

6.3. Dalitz Pair Vertex Fit

For finding the vertex of the decay π0 → eeγ without information from the photon,

the vertex fit algorithm described in chapter 4 is applied on the electron-positron

pair. In principle, the results from chapter 5 apply to the reconstruction of the

electron-positron pair from Dalitz decays.

Dalitz pairs are often asymmetric with one electron having significantly more

kinetic energy than the other. The ratio of the kinetic energy of the positron Ekin
+

to the kinetic energy of the pair Ekin
pair is shown in figure 6.1b.

A χ2-map in the fashion of section 5.3 is shown in figure 6.1a. The χ2-minimum

is close to the true decay vertex, which lies in the origin of this map. Since the

opening angle between the two tracks at the vertex is 134.5◦, the χ2-minmum is

not elongated in the direction of the total momentum.

6.3.1. Vertex Resolution

For low invariant masses, the two Dalitz electrons are very parallel. As discussed in

chapter 5, this causes the uncertainties parallel to the (virtual) photon momentum

to be significantly larger than perpendicular to it. The higher the invariant mass,

the larger opening angle between the two particles becomes. Larger opening angles

increase precision parallel to the momentum of the electron-positron system (see

figure 6.2, and C.3 and C.4 in the appendix)). The parallel vertex resolutions vary
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(a) χ2 map for a Dalitz decay with an
invariant mass of the e+e− system
of Mee = 71.85 MeV. The opening
angle between the electron and the
positron is 134.5◦. The decay vertex
is at (0,0). See also section 5.3.
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Figure 6.1.: Reconstruction of the electron-positron pairs from Dalitz decays.

between less than 1 mm and up to over 4 mm for small invariant masses.

The perpendicular part of the resolution (also shown in figure 6.2) is always in

the order of 200 µm with only a small dependence on the invariant mass. As shown

in figure C.5 and C.6 in the appendix, the vertex resolution is worst for invariant

masses between 60 MeV and 80 MeV.

6.3.2. Invariant Mass

A Dalitz pair stems from internal conversion of a highly virtual photon. Therefore,

the invariant mass of a Dalitz pair (shown in figure 6.3a) can generally be much

higher than the invariant mass of conversion of a real photon with an upper limit

of the pion mass. The residual distribution has an RMS of 1.64 MeV and is slightly

right-skewed with a skewness of 0.54 (see 6.3b). This is mainly due to events

with small invariant masses and correspondingly small opening angles between

the two electrons (see figures C.1 and C.2 in the appendix). Misreconstruction of

an opening angle close to zero leads to an overestimation in both directions. For
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Figure 6.2.: The RMS of the residual distribution of the vertex resolution
parallel and perpendicular to the total momentum of the e+e−

system as a function of the invariant mass Mee.

events with an invariant mass of larger than 10 MeV, the residual distribution is

left-skewed.

6.4. Reconstruction of Pion Decays

Full reconstruction of the Dalitz decay is necessary to identify the pion and to

suppress backgrounds. The energies of all three particles must add up to the total

energy of the pion, the momenta must add up to the momentum expected from the

production mechanism and the invariant mass of all three particles must match

the rest mass of the pion.

After reconstruction of the photon, e.g. the way studied in chapter 5, a common

vertex for the photon and the two electrons from the Dalitz decay has to be found.

The two electron tracks and the photon can be combined with using a mod-

ified multiple scattering vertex fit that allows for straight tracks for the photon.

Reconstruction of the photon has an angular uncertainty of 10–14 mrad and a

spatial uncertainty of 60–80 µm perpendicular to the photon momentum. For a

significant displacement of the photon conversion vertex, the same assumptions as

for the multiple scattering vertex fit can be made for the photon: The position is

known with a very high precision and the only source of uncertainty is an angular
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Figure 6.3.: Spectrum and residuals of the invariant mass of the electron-
positron pair from Dalitz decays.

uncertainty. That position and the angular uncertainty are provided by the photon

reconstruction. For short extrapolation lengths of less than 6 mm, the spatial

uncertainty is the dominant part of the uncertainty when extrapolating and cannot

be neglected anymore.

Implementation of such a modified vertex fit that takes spatial uncertainties of

the photon position into account and allows for straight tracks exceeds the scope

of this thesis and remains to be done in future studies.

6.5. Signal vs. Background

Besides accidental background from combination of unrelated tracks, the most

important background is the dominant pion decay π0 → γγ. If one of these photons

converts in the target region, the signature of one electron, one positron and one

photon is present (see figure 6.4).

Photon conversion can only occur near material with a probability which is

proportional to the effective thickness of the material for small distances and thin

material. This implies displaced vertices compared to the beam profile as well as a

dependence of the effective thickness of converter material. For a thin converter

parallel to the z-axis, photon would be enhanced by a factor of 1/ cosλ. Dalitz

decay vertices can only lie within the region where the pions are produced, since
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: pion decay : photon conversion

Figure 6.4.: The signal from a Dalitz decay (left) in a detector like Mu3e can
be mimicked by the dominant pion decay π0 → γγ if one of the
photons decays in the target region (right).

pions decay promptly.

For the reconstruction of a Dalitz decay, only one photon has to convert.

Assuming the same conversion probability for all photons, the probability that

both photons from the dominant decay π0 → γγ is suppressed quadratically. With

a branching ratio of the Dalitz decay BR = 1.174(30) %, the dominant pion decay

is enhanced by a factor of 84. By taking these two effects into account, one can

calculate the amount of fully converted pion decays as a function of the thickness of

a converter X/X0 (see figure 6.5a). A thin converter suppresses background events

effectively. Up to X/X0 ≈ 0.015, one would actually observe more Dalitz decays

than fully converted background decays. The ratio of signal over background events

is shown in figure 6.5b. The converter thickness needs to be optimised: A low

ensures a pure signal while the rate of Dalitz decays increases approximately linear

with the thickness.

The expected invariant mass spectrum for a converter thickness of 1 hX0 is

shown in figure 6.6. For studies of the invariant mass spectrum, the contribution

from π0 → γγ needs to be considered.
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6.6. Conclusion

The acceptance for electron-positron pairs from Dalitz decays in the Mu3e detector

lies between 40 and 50 %. However, the probability to reconstruct the photon of a

Dalitz decay is only about 0.26 %. Taking these probabilities and the branching ratio

of the Dalitz decay into account, the rate of Dalitz decays is at about 1.4× 10−4

compared to the rate of produced pions.

Production of neutral pions in the Mu3e detector requires a target with an

abundance of photons. Furthermore, to increase the rate of observable Dalitz

decays, the photon conversion probability has to be increased. A liquid hydrogen

target enclosed in a metal container would serve both these purposes without any

modifications to the layout of the pixel detector layers. The design of such a target

has to be optimised for a high conversion rate while maintaining an acceptable

amount of background.
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7. Discussion

The goal of the Mu3e experiment is to search for the charged lepton flavour violating

(cLFV) decay µ+ → e+e−e+ with an unprecedented sensitivity of one in 1016 muon

decays. Four barrel-shaped layers of silicon pixel sensors and two timing detector

systems are used to track electrons(1) emerging from the target region, where the

incident muons are stopped and decay at rest. The Mu3e detector is optimised

for electrons with energies up to half the muon mass mµ/2 ≈ 53 MeV (in natural

units).

Only charged particles can be reconstructed in the Mu3e detector. If a photon

converts to an electron-positron pair and these two particles are reconstructed,

one can reconstruct the photons themselves. The opening angle between the two

tracks from the electron and positron from photon conversion is small, which poses

a difficulty for reconstruction. A characteristic opening angle for photon conversion

is Θ ≈ me/Eγ, where me is the electron mass and Eγ is the photon energy.

With reconstructed photons in Mu3e, a wide range of tests of the Standard

Model of particle physics and searches for physics beyond the Standard Model can

be performed. Examples are the search search for cLFV decay µ+ → e+γ and

precision measurements of the Dalitz decay of the neutral pion π0 → e+e−γ.

Within the scope of this thesis, an algorithm is developed to reconstruct

these events. This vertex reconstruction procedure is based on a linearised three-

dimensional vertex fit, treating multiple Coulomb scattering (MS) as the only

source of uncertainty. To account for nonlinearities and to improve vertex finding

performance, this vertex fit is performed iteratively.

(1)In this thesis, the term electron is used for both the negative electron e− and its antiparticle,
the positron e+.
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7. Discussion

7.1. Summary and Discussion

The vertex fit for two-prong signatures is implemented and tested using simulated

photon conversion events and is furthermore applied to study the primary electron-

positron pairs from simulated Dalitz decays π0 → e+e−γ.

Photon conversion can be reconstructed both in the passive and active ma-

terial of the detector provided that the tracks of both conversion electrons are

reconstructed.

In the passive part of the detector, spatial resolution for the reconstructed

vertex position is determined by the direction of the photon. The largest uncertainty

is parallel to the photon momentum with an uncertainty of up to about 3 mm.

This is expected due to the fact that the electron tracks are very parallel. On the

other hand, the uncertainty of the vertex position in directions perpendicular to the

photon direction is well below 100 µm. Overestimation of the vertex corrections due

to linearisation can lead to oscillations of the vertex position, that are countered by

damping the corrections if an oscillation is detected. Single large overestimation of

the correction can also lead to intermediate vertex positions outside of the detector

for which the fit fails. This is prevented by limiting the magnitude of the vertex

corrections by regularisation. An optimised regularisation scale of 1 mm is chosen.

Combining these two countermeasures leads to a convergence efficiency of more

than 99 % for photon convergence in the muon stopping target.

For conversion in the pixel detector layers—at least when the two conversion

electrons share a hit—the vertex fit converges in the position of the hit. This is the

best vertex position estimate given the information of the tracks. In six percent of

the conversions inside the first layer, the two tracks do not share a hit. The vertex

position perpendicular to the photon can be reconstructed with a high precision of

about 30 µm in this case, while the resolution parallel to the photon is 2 mm. In

this case, the assumption in the fit of dominating uncertainties due to multiple

Coulomb scattering is not fulfilled. Uncertainties are actually dominated by the

spatial uncertainty of the hit position.

For extrapolation of a photon over distances of more than 6 mm, the dominant

uncertainty is the angular uncertainty which is in the order of 10–15 mrad. Ex-

trapolation over shorter distances is dominated by the spatial uncertainty of the
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convergence position.

Quantities such as the invariant mass of the electron-positron pair can be

reconstructed from the track parameters and the vertex position for further analysis.

Reconstruction of the invariant mass of photon conversion pairs is possible with

resolutions between 500 keV for conversion in the layers and 900 keV for conversion

in the muon stopping target. The reconstructed invariant mass can be used to

distinguish photon conversion from Bhabha scattering, which is a typical source of

background for many decays.

Recently, the track reconstruction has been extended to allow for reconstruction

of tracks starting in the second detector layer [31]. This extension is employed in

this thesis. By reconstruction of these tracks the amount of reconstructable photon

conversion events is increased by about 75 % from photon conversion in the second

layer.

7.2. Outlook

The vertex fit as it is implemented in this thesis is well suited to reconstruct photon

conversion events, but there is potential for improvement in reconstruction of the

vertex position component parallel to the photon momentum. A simple solution

to that would be to constrain the vertex position to be in material, although for

this, detailed knowledge of the distribution of material in the detector is required.

A more elegant solution would be the reconstruction of that component from the

centres of the osculating circles of the two tracks.

Another improvement of the vertex fit can be achieved by taking spatial

uncertainties of the hit positions into account. This allows for proper treatment of

cases in which photon conversion takes place close to the pixel layers.

As of now, the implementation of the vertex fit features no optimisation of

speed. Features that guarantee convergence in ill-defined configurations, namely

Tikhonov regularisation and damping, slow down convergence of the fit by scaling

down the vertex corrections if found necessary. For the case of shared hits, the fit

procedure brings no improvement over searching for and choosing these hits as the

vertex position, thus fitting can be avoided.

The reconstruction of photon conversion events can be used to identify the
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distribution of material inside the Mu3e detector. First studies on material mapping

are already performed using the vertex fit procedure developed in this thesis [31].

Photon reconstruction is also required in the search for the cLFV decay µ→ eγ

with a modified version of the Mu3e detector. Such modifications have been

proposed in [27]. A new proposal foresees a dedicated double-layer of silicon pixel

detectors with a photon converter at a radius large enough that no positrons from

the target can reach this layer. To reconstruct electron tracks in just two layers, a

modified track reconstruction allowing for the reconstruction of recurling tracks

is necessary. If such an extension of the track reconstruction is realised, further

studies of photon conversion vertex reconstruction based on these tracks need to

be performed. The advantages of a dedicated photon converter are the higher yield

compared to conversion in the low material Mu3e detector, and the possibility to

constrain the vertex position to the converter material.

In addition, the branching fraction of the radiative muon decay µ+ → e+νµνeγ

could be measured using this setup. In contrast to µ+ → e+γ, the photon and

the electron of radiative decays are not monoenergetic. Background rejection is

only possible via vertex constraints, so these measurements probably have to be

performed with a lower muon rate than used in the search for µ→ eee.

As a part of this thesis, neutral pions and Dalitz decays π0 → e+e−γ are

implemented in the Mu3e simulation. Further studies on the experimental setup

for TFF measurements of neutral pions have to be concluded to determine the

competitiveness of Mu3e compared to other experiments. Necessary modifications

include a (hydrogen) target to produce neutral pions inside the detector. The

hydrogen is contained in a metal container, which could at the same time serve as

a photon converter. A linearised vertex fit with multiple scattering could also be

used for the reconstruction of the rare decays π0 → e+e−e+e− and π0 → e+e−.

Furthermore, the programme developed in this thesis has been successfully used

for preliminary studies on the reconstruction of displaced decay vertices of dark

photons [31]. The sensitivity for a bump search for dark photons in the invariant

mass spectrum of the e+e− system of Dalitz decays using the photon reconstruc-

tion presented in this thesis has yet to be evaluated. Apart from combinatorial

backgrounds, no background is to be expected for larger invariant masses. Bhabha

scattering events do not contribute to the invariant mass spectrum above about
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7.2. Outlook

7 MeV and photon conversion is strongly suppressed at larger invariant masses.

Reconstruction of photons is an important tool for many searches for physics

beyond the Standard Model as well as precision measurements that can be performed

using the Mu3e detector. This thesis demonstrates the feasibility of using a linearised

multiple scattering vertex fit to reconstruct photon conversion events as well as

other two-prong signatures.
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A. Additional Calculations for the

Vertex Fit

Several calculations are necessary to perform the multiple scattering vertex fit. In

the Mu3e experiment, tracks have low momenta of less than 53 MeV and are highly

bent in the 1 T magnetic field. The bending of the tracks creates nonlinearities

which have to be taken into account when calculating the scattering angles at the

first layer as a function of the vertex position #„α i ≡ #„α i(
#„v ) = (ΘMS,i,ΦMS,i)

T and

an explicit form of the Jacobian matrices Ji.

Due to the special geometry and choice of coordinates, the weight matrices are

diagonal and given by

Wi =

(
σ−2

Θi
0

0 σ−2
Φi

)
= σ−2

MS,i ·
(

1 0

0 sin2 θi

)
(A.1)

with σMS,i obtained from equation 4.2.

A.1. Calculating the Scattering Angles

In the following, a way of calculating the scattering angles is given by [19].

A.1.1. Transverse Scattering

The scattering angle ΦMS is defined as the difference between the track directions

before and after scattering (see figure A.1)

ΦMS := ϕ1 − ϕ0. (A.2)
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Figure A.1.: Sketch of a track scattering on the first layer in the transverse
view. Shown are the vertex position #„v and hit position #„xH ,
as well as directions at the vertex (ϕv) before (ϕ0), and after
scattering (ϕ1). The vector

#„

d between vertex and hit position
and the scattering angle ΦMS are also shown.

ϕ0 depends on the probed vertex position, and ϕ1 is obtained from the track

reconstruction.

To obtain ϕ0, the bending angle Φ0V can be defined as the difference of azimuthal

angles at the first layer and at the vertex:

Φ0V = ϕ0 − ϕv. (A.3)

This bending angle can be obtained by solving the following transcendental func-

tion [30]:

sin2 Φ0V

2
=

d2

4R2
+

z2

R2Φ2
0V

sin2 Φ0V

2
(A.4)

where d =
∣∣∣ #„

d 12

∣∣∣ is the transverse component of the distance vector
#„

d = #„xH − #„v

and z =
(

#„

d
)

3
is the longitudinal component. The other components of

#„

d can

be denoted as x =
(

#„

d
)

1
and y =

(
#„

d
)

2
. The 3D track radius R is given by the

reconstructed track momentum p and the magnetic field B: R = p
B

. When Φ0V
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A.1. Calculating the Scattering Angles

Figure A.2.: Sketch of longitudinal scattering. Since the polar angle θ is an
invariant under motion in a homogeneous magnetic field, it can
be assumed that the angle does not change before the particle
reaches the first layer. The scattering angle ΘMS is given by the
difference of angles after (θ1) and before scattering (θ0).

has been obtained, the missing azimuthal angle ϕ0 is given as

φ0 =
Φ0V

2
+ ζ (A.5)

where ζ := ∠
#„

d denotes the azimuthal angle of the distance vector
#„

d . Combining

A.2 and A.5, the azimuthal scattering angle is finally given by

ΦMS = φ1 − ζ −
Φ0V

2
. (A.6)

A.1.2. Longitudinal Scattering

Similar to the definition of ΦMS, one can define

ΘMS := θ1 − θ0 (A.7)

as the difference of polar angles after and before scattering (see figure A.2). Under

the assumption that no energy is lost in the scattering process, θ0 can be expressed

as

cos θ0 =
z

RΦ0V

. (A.8)
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The longitudinal scattering angle is then given by

ΘMS = θ1 − arccos
z

RΦ0V

. (A.9)

A.2. First Derivatives of Scattering Angles

The derivatives of the 2D bending angle Φ0V with respect to

d =

√
(xH − #„v x)

2 + (yH − #„v y)
2 (A.10)

=
√
x2 + y2 (A.11)

and z = zH − #„v z (A.12)

can be calculated from A.4, yielding

∂Φ0V ( #„v )

∂d
=

Φ2
0V d

(Φ2
0VR

2 − z2) sin Φ0V + 4z2 sin2 (Φ0V /2)
Φ0V

(A.13)

∂Φ0V ( #„v )

∂z
=

4z sin2 (Φ0V /2)

(Φ2
0VR

2 − z2) sin Φ0V + 4z2 sin2 (Φ0V /2)
Φ0V

. (A.14)

The derivatives ∂Φ0V ( #„v )
∂x

and ∂Φ0V ( #„v )
∂y

are obtained by substituting:

∂d

∂x
=

x

d
(A.15)

∂d

∂y
=

y

d
. (A.16)

Finally, the derivatives with respect to #„v are obtained, using

K = (Φ2
0VR

2 − z2) sin Φ0V + 4z2 sin2 (Φ0V /2)

Φ0V
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A.2. First Derivatives of Scattering Angles

First Derivatives of ΦMS

∂Φ

∂vx
=

x

2K
Φ2

0V −
y

d2
(A.17)

∂Φ

∂vy
=

y

2K
Φ2

0V +
x

d2
(A.18)

∂Φ

∂vz
=

2z

K
sin2 Φ0V

2
(A.19)

First Derivatives of ΘMS

∂ΘMS

∂vx
=

xzΦ0V

K
√

Φ2
0VR

2 − z2
(A.20)

∂ΘMS

∂vy
=

yzΦ0V

K
√

Φ2
0VR

2 − z2
(A.21)

∂ΘMS

∂vz
=

1√
Φ2

0VR
2 − z2

[
4z2 sin2 Φ0V

2

K Φ0V

− 1

]
(A.22)
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B. Additional Figures for Photons

Parallel Part of Spatial Residuals for Different

Configurations
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(a) Configuration A, i.e. two transverse in-
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Figure B.1.: Parallel part of the residuals of the reconstructed vertex position
for photon conversion for the two possible configurations of the
tracks.
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B. Additional Figures for Photons

Spatial Resolutions for Different Chi-Squared Cuts

(Parallel Part)
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Figure B.2.: Parallel part of the residuals of the reconstructed vertex position
for photon conversion for different cuts on χ2.
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Figure B.3.: Parallel part of the residuals of the reconstructed vertex position
for photon conversion for different cuts on χ2.
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B. Additional Figures for Photons

Spatial Resolutions for Different Chi-Squared Cuts
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Figure B.4.: Perpendicular part of the residuals of the reconstructed vertex
position for photon conversion for different cuts on χ2.
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Figure B.5.: Perpendicular part of the residuals of the reconstructed vertex
position for photon conversion for different cuts on χ2.

95





C. Additional Figures for Dalitz

Pairs

Invariant Mass Resolution for Pions
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Figure C.1.: Residuals of the reconstructed invariant mass of the e+e− pair
from Dalitz decays for invariant mass intervals up to 40 MeV.
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Figure C.2.: Residuals of the reconstructed invariant mass of the e+e− pair
from Dalitz decays for invariant mass intervals up to 80 MeV.
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Vertex Position Residuals
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Figure C.3.: Parallel part of the residuals of the vertex position of Dalitz decays
for invariant mass intervals up to 40 MeV.
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Figure C.4.: Parallel part of the residuals of the vertex position of Dalitz decays
for invariant mass intervals up to 80 MeV.
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Figure C.5.: Perpendicular part of the residuals of the vertex position of Dalitz
decays for invariant mass intervals up to 40 MeV. Binning is
chosen such that each bin corresponds to an annulus of 20 000 µm2.
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Figure C.6.: Perpendicular part of the residuals of the vertex position of Dalitz
decays for invariant mass intervals up to 80 MeV. Binning is
chosen such that each bin corresponds to an annulus of 20 000 µm2.
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